kittycad.models.ok_modeling_cmd_response

Classes

OptionCameraDragEnd(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCameraDragMove(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCameraDragStart(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCenterOfMass(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionClosePath(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCurveGetControlPoints(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCurveGetEndPoints(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCurveGetType(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCurveSetConstraint(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraCenterToScene(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraCenterToSelection(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraFocusOn(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraGetSettings(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraLookAt(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraPerspectiveSettings(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraSetOrthographic(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraSetPerspective(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraZoom(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDensity(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDisableDryRun(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEdgeLinesVisible(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEmpty(**data)

An empty response, used for any command that does not explicitly have a response defined here.

OptionEnableDryRun(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEnableSketchMode(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEngineUtilEvaluatePath(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityCircularPattern(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityFade(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetAllChildUuids(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetChildUuid(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetDistance(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetNumChildren(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetParentId(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetSketchPaths(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityLinearPattern(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityLinearPatternTransform(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityMakeHelix(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityMirror(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityMirrorAcrossEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntitySetOpacity(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionExport(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionExtendPath(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionExtrude(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionExtrusionFaceInfo(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionFaceGetCenter(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionFaceGetGradient(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionFaceGetPosition(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionFaceIsPlanar(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionGetEntityType(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionGetNumObjects(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionGetSketchModePlane(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionHandleMouseDragEnd(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionHandleMouseDragMove(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionHandleMouseDragStart(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionHighlightSetEntities(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionHighlightSetEntity(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionImportFiles(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionImportedGeometry(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionLoft(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMakeAxesGizmo(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMakeOffsetPath(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMakePlane(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMass(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMouseClick(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMouseMove(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMovePathPen(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionNewAnnotation(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionObjectBringToFront(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionObjectSetMaterialParamsPbr(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionObjectVisible(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathGetCurveUuid(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathGetCurveUuidsForVertices(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathGetInfo(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathGetSketchTargetUuid(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathGetVertexUuids(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathSegmentInfo(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPlaneIntersectAndProject(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPlaneSetColor(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionReconfigureStream(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionRemoveSceneObjects(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionRevolve(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionRevolveAboutEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSceneClearAll(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectAdd(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectClear(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectGet(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectRemove(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectReplace(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectWithPoint(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSendObject(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetBackgroundColor(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetCurrentToolProperties(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetDefaultSystemProperties(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetSceneUnits(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetSelectionFilter(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetSelectionType(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetTool(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSketchModeDisable(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid2DAddHole(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DFilletEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetAllEdgeFaces(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetAllOppositeEdges(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetCommonEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetExtrusionFaceInfo(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetNextAdjacentEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetOppositeEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetPrevAdjacentEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DShellFace(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionStartPath(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSurfaceArea(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSweep(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionTakeSnapshot(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionUpdateAnnotation(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionViewIsometric(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionVolume(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionZoomToFit(**data)

Create a new model by parsing and validating input data from keyword arguments.

class kittycad.models.ok_modeling_cmd_response.OptionCameraDragEnd(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.camera_drag_end.CameraDragEnd'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['camera_drag_end']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragEnd'>, 'config': {'title': 'OptionCameraDragEnd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragEnd'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragEnd:94248694445216', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_drag_end.CameraDragEnd'>, 'config': {'title': 'CameraDragEnd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_drag_end.CameraDragEnd'>>]}, 'ref': 'kittycad.models.camera_drag_end.CameraDragEnd:94248672416080', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94248672388800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94248672379872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'CameraDragEnd', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'camera_drag_end', 'schema': {'expected': ['camera_drag_end'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCameraDragEnd', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragEnd, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_end'], required=False, default='camera_drag_end')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf3f4a0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b41185b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "camera_drag_end",                                             },                                             expected_py: None,                                             name: "literal['camera_drag_end']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7faa3d150,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007f40b6b205b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x000055b7faa366c0,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e062b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e06130,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d4330,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7508150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b6249620,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d43b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x000055b7faa343e0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CameraDragEnd",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCameraDragEnd",     }, ), definitions=[Model(ModelSerializer { class: Py(0x55b7fa90b760), serializer: Fields(GeneralFieldsSerializer { fields: {"y": SerField { key_py: Py(0x7f40b7c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7f40b7c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7f40b7c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCameraDragEnd", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6cd20,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6cd50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007f40b2c89eb0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007f40b2c89ef0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b6b205b0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007f40b2c6cb40,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007f40b2c6cb70,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7508150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007f40b2c6cba0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007f40b2c6cbd0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e06130,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007f40b2f59230,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007f40b2c89df0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d43b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007f40b7c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x000055b7faa343e0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007f40b2c6cc00,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007f40b2c6cc30,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e062b0,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007f40b2c89e70,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007f40b2c89e30,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d4330,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007f40b2c6cc60,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007f40b2c6cc90,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007f40b2c6ccc0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007f40b2c6ccf0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b6249620,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x000055b7faa366c0,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CameraDragEnd",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7faa3d150,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "CameraDragEnd",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6cd80,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6cdb0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b41185b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "camera_drag_end": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c89f40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b41185b0,                                                 ),                                             ],                                         },                                         expected_repr: "'camera_drag_end'",                                         name: "literal['camera_drag_end']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['camera_drag_end']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCameraDragEnd",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf3f4a0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionCameraDragEnd",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7f40b7c24420), path: LookupPath([S("x", Py(0x7f40b7c24420))]) }, name_py: Py(0x7f40b7c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7f40b7c24450), path: LookupPath([S("y", Py(0x7f40b7c24450))]) }, name_py: Py(0x7f40b7c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7f40b7c24480), path: LookupPath([S("z", Py(0x7f40b7c24480))]) }, name_py: Py(0x7f40b7c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b7fa90b760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7f40b5be63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.camera_drag_end.CameraDragEnd, type: Literal['camera_drag_end'] = 'camera_drag_end') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CameraDragEnd[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragEnd, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_end'], required=False, default='camera_drag_end')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['camera_drag_end'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCameraDragMove(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.camera_drag_move.CameraDragMove'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['camera_drag_move']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragMove'>, 'config': {'title': 'OptionCameraDragMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragMove'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragMove:94248694407968', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_drag_move.CameraDragMove'>, 'config': {'title': 'CameraDragMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_drag_move.CameraDragMove'>>]}, 'ref': 'kittycad.models.camera_drag_move.CameraDragMove:94248672451776', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94248672388800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94248672379872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'CameraDragMove', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'camera_drag_move', 'schema': {'expected': ['camera_drag_move'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCameraDragMove', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragMove, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_move'], required=False, default='camera_drag_move')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf36320,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b41182b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "camera_drag_move",                                             },                                             expected_py: None,                                             name: "literal['camera_drag_move']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7faa45cc0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007f40b6b205b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x000055b7faa366c0,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e06130,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e062b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d4330,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b6249620,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7508150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d43b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x000055b7faa343e0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CameraDragMove",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCameraDragMove",     }, ), definitions=[Model(ModelSerializer { class: Py(0x55b7fa90b760), serializer: Fields(GeneralFieldsSerializer { fields: {"y": SerField { key_py: Py(0x7f40b7c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7f40b7c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7f40b7c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCameraDragMove", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6c300,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6c240,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007f40b2c833f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007f40b2c83430,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b6b205b0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007f40b2c6c5d0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007f40b2c6c630,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7508150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007f40b2c6c510,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007f40b2c6c420,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e06130,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007f40b2c83330,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007f40b2c832f0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d43b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007f40b7c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x000055b7faa343e0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007f40b2c6c540,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007f40b2c6c5a0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e062b0,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007f40b2c833b0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007f40b2c83370,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d4330,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007f40b2c6c570,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007f40b2c6c450,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007f40b2c6c4e0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007f40b2c6c4b0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b6249620,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x000055b7faa366c0,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CameraDragMove",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7faa45cc0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "CameraDragMove",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6c2d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6c2a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b41182b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "camera_drag_move": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c83480,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b41182b0,                                                 ),                                             ],                                         },                                         expected_repr: "'camera_drag_move'",                                         name: "literal['camera_drag_move']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['camera_drag_move']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCameraDragMove",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf36320,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionCameraDragMove",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7f40b7c24420), path: LookupPath([S("x", Py(0x7f40b7c24420))]) }, name_py: Py(0x7f40b7c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7f40b7c24450), path: LookupPath([S("y", Py(0x7f40b7c24450))]) }, name_py: Py(0x7f40b7c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7f40b7c24480), path: LookupPath([S("z", Py(0x7f40b7c24480))]) }, name_py: Py(0x7f40b7c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b7fa90b760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7f40b5be63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.camera_drag_move.CameraDragMove, type: Literal['camera_drag_move'] = 'camera_drag_move') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CameraDragMove[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragMove, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_move'], required=False, default='camera_drag_move')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['camera_drag_move'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCameraDragStart(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.camera_drag_start.CameraDragStart'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['camera_drag_start']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragStart'>, 'config': {'title': 'OptionCameraDragStart'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragStart'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragStart:94248693821744', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_drag_start.CameraDragStart'>, 'config': {'title': 'CameraDragStart'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_drag_start.CameraDragStart'>>]}, 'ref': 'kittycad.models.camera_drag_start.CameraDragStart:94248672482224', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'CameraDragStart', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'camera_drag_start', 'schema': {'expected': ['camera_drag_start'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCameraDragStart', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragStart, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_start'], required=False, default='camera_drag_start')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbea7130,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7faa4d3b0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CameraDragStart",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4119130,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "camera_drag_start",                                             },                                             expected_py: None,                                             name: "literal['camera_drag_start']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCameraDragStart",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCameraDragStart", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c401e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c40210,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "CameraDragStart",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7faa4d3b0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "CameraDragStart",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40240,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40270,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4119130,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "camera_drag_start": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ddb9c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4119130,                                                 ),                                             ],                                         },                                         expected_repr: "'camera_drag_start'",                                         name: "literal['camera_drag_start']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['camera_drag_start']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCameraDragStart",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbea7130,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionCameraDragStart",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.camera_drag_start.CameraDragStart, type: Literal['camera_drag_start'] = 'camera_drag_start') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CameraDragStart[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragStart, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_start'], required=False, default='camera_drag_start')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['camera_drag_start'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCenterOfMass(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.center_of_mass.CenterOfMass'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['center_of_mass']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCenterOfMass'>, 'config': {'title': 'OptionCenterOfMass'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCenterOfMass'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCenterOfMass:94248695108896', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.center_of_mass.CenterOfMass'>, 'config': {'title': 'CenterOfMass'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.center_of_mass.CenterOfMass'>>]}, 'ref': 'kittycad.models.center_of_mass.CenterOfMass:94248672538608', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center_of_mass': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'output_unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitLength'>, 'members': [UnitLength.CM, UnitLength.FT, UnitLength.IN, UnitLength.M, UnitLength.MM, UnitLength.YD], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_length.UnitLength:94248680816208', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}}, 'model_name': 'CenterOfMass', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'center_of_mass', 'schema': {'expected': ['center_of_mass'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCenterOfMass', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CenterOfMass, required=True), 'type': FieldInfo(annotation=Literal['center_of_mass'], required=False, default='center_of_mass')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfe1520,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7faa5aff0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "center_of_mass": SerField {                                                     key_py: Py(                                                         0x00007f40b411acb0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x000055b7fa90b760,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "x": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24420,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "y": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24450,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "z": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24480,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 3,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "Point3d",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "output_unit": SerField {                                                     key_py: Py(                                                         0x00007f40b3530770,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x000055b7fb23fe50,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CenterOfMass",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b411acb0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "center_of_mass",                                             },                                             expected_py: None,                                             name: "literal['center_of_mass']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCenterOfMass",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCenterOfMass", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6f4e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6f510,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "center_of_mass",                                                 lookup_key: Simple {                                                     key: "center_of_mass",                                                     py_key: Py(                                                         0x00007f40b2cd5e30,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "center_of_mass",                                                                 Py(                                                                     0x00007f40b2cd6db0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b411acb0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "x",                                                                         lookup_key: Simple {                                                                             key: "x",                                                                             py_key: Py(                                                                                 0x00007f40b7c24420,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "x",                                                                                         Py(                                                                                             0x00007f40b7c24420,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24420,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "y",                                                                         lookup_key: Simple {                                                                             key: "y",                                                                             py_key: Py(                                                                                 0x00007f40b7c24450,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "y",                                                                                         Py(                                                                                             0x00007f40b7c24450,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24450,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "z",                                                                         lookup_key: Simple {                                                                             key: "z",                                                                             py_key: Py(                                                                                 0x00007f40b7c24480,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "z",                                                                                         Py(                                                                                             0x00007f40b7c24480,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24480,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "Point3d",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x000055b7fa90b760,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                         name: "Point3d",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "output_unit",                                                 lookup_key: Simple {                                                     key: "output_unit",                                                     py_key: Py(                                                         0x00007f40b2cd6cf0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "output_unit",                                                                 Py(                                                                     0x00007f40b2ccf330,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3530770,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x000055b7fb23fe50,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "yd": 5,                                                                     "ft": 1,                                                                     "m": 3,                                                                     "cm": 0,                                                                     "in": 2,                                                                     "mm": 4,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007f40b2cd75c0,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007f40b35128d0,                                                                 ),                                                                 Py(                                                                     0x00007f40b3512e70,                                                                 ),                                                                 Py(                                                                     0x00007f40b3512f30,                                                                 ),                                                                 Py(                                                                     0x00007f40b3512f90,                                                                 ),                                                                 Py(                                                                     0x00007f40b3512ff0,                                                                 ),                                                                 Py(                                                                     0x00007f40b3513050,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'cm', 'ft', 'in', 'm', 'mm' or 'yd'",                                                         strict: false,                                                         class_repr: "UnitLength",                                                         name: "str-enum[UnitLength]",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CenterOfMass",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7faa5aff0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "CenterOfMass",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6f570,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6f450,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b411acb0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "center_of_mass": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ccdbc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b411acb0,                                                 ),                                             ],                                         },                                         expected_repr: "'center_of_mass'",                                         name: "literal['center_of_mass']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['center_of_mass']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCenterOfMass",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfe1520,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionCenterOfMass",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.center_of_mass.CenterOfMass, type: Literal['center_of_mass'] = 'center_of_mass') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CenterOfMass[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CenterOfMass, required=True), 'type': FieldInfo(annotation=Literal['center_of_mass'], required=False, default='center_of_mass')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['center_of_mass'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionClosePath(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.close_path.ClosePath'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['close_path']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionClosePath'>, 'config': {'title': 'OptionClosePath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionClosePath'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionClosePath:94248694396560', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.close_path.ClosePath'>, 'config': {'title': 'ClosePath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.close_path.ClosePath'>>]}, 'ref': 'kittycad.models.close_path.ClosePath:94248672567472', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'face_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'ClosePath', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'close_path', 'schema': {'expected': ['close_path'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionClosePath', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ClosePath, required=True), 'type': FieldInfo(annotation=Literal['close_path'], required=False, default='close_path')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf33690,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b41190b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "close_path",                                             },                                             expected_py: None,                                             name: "literal['close_path']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7faa620b0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "face_id": SerField {                                                     key_py: Py(                                                         0x00007f40b3e04870,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ClosePath",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionClosePath",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionClosePath", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1e3d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1e7f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "face_id",                                                 lookup_key: Simple {                                                     key: "face_id",                                                     py_key: Py(                                                         0x00007f40b2e1e520,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "face_id",                                                                 Py(                                                                     0x00007f40b2e1e730,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3e04870,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ClosePath",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7faa620b0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ClosePath",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1e160,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f000,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b41190b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "close_path": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c749c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b41190b0,                                                 ),                                             ],                                         },                                         expected_repr: "'close_path'",                                         name: "literal['close_path']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['close_path']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionClosePath",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf33690,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionClosePath",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.close_path.ClosePath, type: Literal['close_path'] = 'close_path') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ClosePath[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ClosePath, required=True), 'type': FieldInfo(annotation=Literal['close_path'], required=False, default='close_path')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['close_path'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCurveGetControlPoints(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.curve_get_control_points.CurveGetControlPoints'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['curve_get_control_points']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetControlPoints'>, 'config': {'title': 'OptionCurveGetControlPoints'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetControlPoints'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetControlPoints:94248694766608', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.curve_get_control_points.CurveGetControlPoints'>, 'config': {'title': 'CurveGetControlPoints'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.curve_get_control_points.CurveGetControlPoints'>>]}, 'ref': 'kittycad.models.curve_get_control_points.CurveGetControlPoints:94248672991392', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'control_points': {'metadata': {}, 'schema': {'items_schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'CurveGetControlPoints', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'curve_get_control_points', 'schema': {'expected': ['curve_get_control_points'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCurveGetControlPoints', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetControlPoints, required=True), 'type': FieldInfo(annotation=Literal['curve_get_control_points'], required=False, default='curve_get_control_points')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf8dc10,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ea3a00,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "curve_get_control_points",                                             },                                             expected_py: None,                                             name: "literal['curve_get_control_points']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7faac98a0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "control_points": SerField {                                                     key_py: Py(                                                         0x00007f40b32ff5f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Model(                                                                     ModelSerializer {                                                                         class: Py(                                                                             0x000055b7fa90b760,                                                                         ),                                                                         serializer: Fields(                                                                             GeneralFieldsSerializer {                                                                                 fields: {                                                                                     "x": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b7c24420,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Float(                                                                                                 FloatSerializer {                                                                                                     inf_nan_mode: Null,                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "y": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b7c24450,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Float(                                                                                                 FloatSerializer {                                                                                                     inf_nan_mode: Null,                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "z": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b7c24480,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Float(                                                                                                 FloatSerializer {                                                                                                     inf_nan_mode: Null,                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                 },                                                                                 computed_fields: Some(                                                                                     ComputedFields(                                                                                         [],                                                                                     ),                                                                                 ),                                                                                 mode: SimpleDict,                                                                                 extra_serializer: None,                                                                                 filter: SchemaFilter {                                                                                     include: None,                                                                                     exclude: None,                                                                                 },                                                                                 required_fields: 3,                                                                             },                                                                         ),                                                                         has_extra: false,                                                                         root_model: false,                                                                         name: "Point3d",                                                                     },                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[Point3d]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CurveGetControlPoints",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCurveGetControlPoints",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCurveGetControlPoints", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6d770,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6d890,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "control_points",                                                 lookup_key: Simple {                                                     key: "control_points",                                                     py_key: Py(                                                         0x00007f40b2cb09f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "control_points",                                                                 Py(                                                                     0x00007f40b2cb09b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b32ff5f0,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Model(                                                                 ModelValidator {                                                                     revalidate: Never,                                                                     validator: ModelFields(                                                                         ModelFieldsValidator {                                                                             fields: [                                                                                 Field {                                                                                     name: "x",                                                                                     lookup_key: Simple {                                                                                         key: "x",                                                                                         py_key: Py(                                                                                             0x00007f40b7c24420,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "x",                                                                                                     Py(                                                                                                         0x00007f40b7c24420,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b7c24420,                                                                                     ),                                                                                     validator: Float(                                                                                         FloatValidator {                                                                                             strict: false,                                                                                             allow_inf_nan: true,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "y",                                                                                     lookup_key: Simple {                                                                                         key: "y",                                                                                         py_key: Py(                                                                                             0x00007f40b7c24450,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "y",                                                                                                     Py(                                                                                                         0x00007f40b7c24450,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b7c24450,                                                                                     ),                                                                                     validator: Float(                                                                                         FloatValidator {                                                                                             strict: false,                                                                                             allow_inf_nan: true,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "z",                                                                                     lookup_key: Simple {                                                                                         key: "z",                                                                                         py_key: Py(                                                                                             0x00007f40b7c24480,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "z",                                                                                                     Py(                                                                                                         0x00007f40b7c24480,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b7c24480,                                                                                     ),                                                                                     validator: Float(                                                                                         FloatValidator {                                                                                             strict: false,                                                                                             allow_inf_nan: true,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                             ],                                                                             model_name: "Point3d",                                                                             extra_behavior: Ignore,                                                                             extras_validator: None,                                                                             strict: false,                                                                             from_attributes: false,                                                                             loc_by_alias: true,                                                                         },                                                                     ),                                                                     class: Py(                                                                         0x000055b7fa90b760,                                                                     ),                                                                     generic_origin: None,                                                                     post_init: None,                                                                     frozen: false,                                                                     custom_init: false,                                                                     root_model: false,                                                                     undefined: Py(                                                                         0x00007f40b5be63d0,                                                                     ),                                                                     name: "Point3d",                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CurveGetControlPoints",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7faac98a0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "CurveGetControlPoints",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6d6e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6d860,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ea3a00,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "curve_get_control_points": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cb0a40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ea3a00,                                                 ),                                             ],                                         },                                         expected_repr: "'curve_get_control_points'",                                         name: "literal['curve_get_control_points']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['curve_get_control_points']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCurveGetControlPoints",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf8dc10,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionCurveGetControlPoints",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.curve_get_control_points.CurveGetControlPoints, type: Literal['curve_get_control_points'] = 'curve_get_control_points') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CurveGetControlPoints[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetControlPoints, required=True), 'type': FieldInfo(annotation=Literal['curve_get_control_points'], required=False, default='curve_get_control_points')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['curve_get_control_points'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCurveGetEndPoints(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.curve_get_end_points.CurveGetEndPoints'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['curve_get_end_points']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetEndPoints'>, 'config': {'title': 'OptionCurveGetEndPoints'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetEndPoints'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetEndPoints:94248694914976', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.curve_get_end_points.CurveGetEndPoints'>, 'config': {'title': 'CurveGetEndPoints'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.curve_get_end_points.CurveGetEndPoints'>>]}, 'ref': 'kittycad.models.curve_get_end_points.CurveGetEndPoints:94248673000144', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'end': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'start': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CurveGetEndPoints', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'curve_get_end_points', 'schema': {'expected': ['curve_get_end_points'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCurveGetEndPoints', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetEndPoints, required=True), 'type': FieldInfo(annotation=Literal['curve_get_end_points'], required=False, default='curve_get_end_points')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfb1fa0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7faacbad0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "start": SerField {                                                     key_py: Py(                                                         0x00007f40b7c21fc8,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "end": SerField {                                                     key_py: Py(                                                         0x00007f40b7c1e648,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CurveGetEndPoints",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b453a230,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "curve_get_end_points",                                             },                                             expected_py: None,                                             name: "literal['curve_get_end_points']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCurveGetEndPoints",     }, ), definitions=[Model(ModelSerializer { class: Py(0x55b7fa90b760), serializer: Fields(GeneralFieldsSerializer { fields: {"y": SerField { key_py: Py(0x7f40b7c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7f40b7c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7f40b7c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCurveGetEndPoints", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6f8d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6f8a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "end",                                                 lookup_key: Simple {                                                     key: "end",                                                     py_key: Py(                                                         0x00007f40b2c6fae0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "end",                                                                 Py(                                                                     0x00007f40b2c6fab0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c1e648,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "start",                                                 lookup_key: Simple {                                                     key: "start",                                                     py_key: Py(                                                         0x00007f40b2c6f900,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "start",                                                                 Py(                                                                     0x00007f40b2c6f840,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c21fc8,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CurveGetEndPoints",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7faacbad0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "CurveGetEndPoints",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6f810,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6f870,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b453a230,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "curve_get_end_points": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c91580,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b453a230,                                                 ),                                             ],                                         },                                         expected_repr: "'curve_get_end_points'",                                         name: "literal['curve_get_end_points']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['curve_get_end_points']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCurveGetEndPoints",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfb1fa0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionCurveGetEndPoints",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7f40b7c24420), path: LookupPath([S("x", Py(0x7f40b7c24420))]) }, name_py: Py(0x7f40b7c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7f40b7c24450), path: LookupPath([S("y", Py(0x7f40b7c24450))]) }, name_py: Py(0x7f40b7c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7f40b7c24480), path: LookupPath([S("z", Py(0x7f40b7c24480))]) }, name_py: Py(0x7f40b7c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b7fa90b760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7f40b5be63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.curve_get_end_points.CurveGetEndPoints, type: Literal['curve_get_end_points'] = 'curve_get_end_points') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CurveGetEndPoints[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetEndPoints, required=True), 'type': FieldInfo(annotation=Literal['curve_get_end_points'], required=False, default='curve_get_end_points')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['curve_get_end_points'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCurveGetType(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.curve_get_type.CurveGetType'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['curve_get_type']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetType'>, 'config': {'title': 'OptionCurveGetType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetType'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetType:94248694783792', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.curve_get_type.CurveGetType'>, 'config': {'title': 'CurveGetType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.curve_get_type.CurveGetType'>>]}, 'ref': 'kittycad.models.curve_get_type.CurveGetType:94248673014576', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'curve_type': {'metadata': {}, 'schema': {'cls': <enum 'CurveType'>, 'members': [CurveType.LINE, CurveType.ARC, CurveType.NURBS], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.curve_type.CurveType:94248673012016', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}}, 'model_name': 'CurveGetType', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'curve_get_type', 'schema': {'expected': ['curve_get_type'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCurveGetType', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetType, required=True), 'type': FieldInfo(annotation=Literal['curve_get_type'], required=False, default='curve_get_type')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf91f30,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b453a370,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "curve_get_type",                                             },                                             expected_py: None,                                             name: "literal['curve_get_type']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7faacf330,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "curve_type": SerField {                                                     key_py: Py(                                                         0x00007f40b453a970,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x000055b7faace930,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CurveGetType",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCurveGetType",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCurveGetType", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6d0b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6d200,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "curve_type",                                                 lookup_key: Simple {                                                     key: "curve_type",                                                     py_key: Py(                                                         0x00007f40b2cb1b70,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "curve_type",                                                                 Py(                                                                     0x00007f40b2cb1b30,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b453a970,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x000055b7faace930,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "nurbs": 2,                                                                     "arc": 1,                                                                     "line": 0,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007f40b2cb1ac0,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007f40b335d850,                                                                 ),                                                                 Py(                                                                     0x00007f40b335d8b0,                                                                 ),                                                                 Py(                                                                     0x00007f40b335d910,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'line', 'arc' or 'nurbs'",                                                         strict: false,                                                         class_repr: "CurveType",                                                         name: "str-enum[CurveType]",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CurveGetType",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7faacf330,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "CurveGetType",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6d140,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6d6b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b453a370,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "curve_get_type": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cb1bc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b453a370,                                                 ),                                             ],                                         },                                         expected_repr: "'curve_get_type'",                                         name: "literal['curve_get_type']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['curve_get_type']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCurveGetType",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf91f30,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionCurveGetType",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.curve_get_type.CurveGetType, type: Literal['curve_get_type'] = 'curve_get_type') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CurveGetType[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetType, required=True), 'type': FieldInfo(annotation=Literal['curve_get_type'], required=False, default='curve_get_type')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['curve_get_type'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCurveSetConstraint(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.curve_set_constraint.CurveSetConstraint'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['curve_set_constraint']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveSetConstraint'>, 'config': {'title': 'OptionCurveSetConstraint'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveSetConstraint'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCurveSetConstraint:94248694092320', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.curve_set_constraint.CurveSetConstraint'>, 'config': {'title': 'CurveSetConstraint'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.curve_set_constraint.CurveSetConstraint'>>]}, 'ref': 'kittycad.models.curve_set_constraint.CurveSetConstraint:94248673021136', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'CurveSetConstraint', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'curve_set_constraint', 'schema': {'expected': ['curve_set_constraint'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCurveSetConstraint', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveSetConstraint, required=True), 'type': FieldInfo(annotation=Literal['curve_set_constraint'], required=False, default='curve_set_constraint')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbee9220,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b453a430,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "curve_set_constraint",                                             },                                             expected_py: None,                                             name: "literal['curve_set_constraint']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7faad0cd0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CurveSetConstraint",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCurveSetConstraint",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCurveSetConstraint", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1e880,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1e7c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "CurveSetConstraint",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7faad0cd0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "CurveSetConstraint",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1e6d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1e820,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b453a430,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "curve_set_constraint": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c49a00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b453a430,                                                 ),                                             ],                                         },                                         expected_repr: "'curve_set_constraint'",                                         name: "literal['curve_set_constraint']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['curve_set_constraint']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCurveSetConstraint",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbee9220,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionCurveSetConstraint",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.curve_set_constraint.CurveSetConstraint, type: Literal['curve_set_constraint'] = 'curve_set_constraint') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CurveSetConstraint[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveSetConstraint, required=True), 'type': FieldInfo(annotation=Literal['curve_set_constraint'], required=False, default='curve_set_constraint')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['curve_set_constraint'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToScene(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_center_to_scene.DefaultCameraCenterToScene'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_center_to_scene']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToScene'>, 'config': {'title': 'OptionDefaultCameraCenterToScene'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToScene'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToScene:94248694259328', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_center_to_scene.DefaultCameraCenterToScene'>, 'config': {'title': 'DefaultCameraCenterToScene'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_center_to_scene.DefaultCameraCenterToScene'>>]}, 'ref': 'kittycad.models.default_camera_center_to_scene.DefaultCameraCenterToScene:94248686558928', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraCenterToScene', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_center_to_scene', 'schema': {'expected': ['default_camera_center_to_scene'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraCenterToScene', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraCenterToScene, required=True), 'type': FieldInfo(annotation=Literal['default_camera_center_to_scene'], required=False, default='default_camera_center_to_scene')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf11e80,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ea39b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_center_to_scene",                                             },                                             expected_py: None,                                             name: "literal['default_camera_center_to_scene']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7b9ed0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraCenterToScene",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraCenterToScene",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraCenterToScene", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1fa50,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1fa80,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraCenterToScene",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7b9ed0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "DefaultCameraCenterToScene",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1fab0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1fae0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ea39b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_center_to_scene": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c61180,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ea39b0,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_center_to_scene'",                                         name: "literal['default_camera_center_to_scene']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_center_to_scene']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraCenterToScene",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf11e80,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDefaultCameraCenterToScene",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_center_to_scene.DefaultCameraCenterToScene, type: Literal['default_camera_center_to_scene'] = 'default_camera_center_to_scene') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraCenterToScene[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraCenterToScene, required=True), 'type': FieldInfo(annotation=Literal['default_camera_center_to_scene'], required=False, default='default_camera_center_to_scene')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_center_to_scene'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToSelection(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_center_to_selection.DefaultCameraCenterToSelection'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_center_to_selection']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToSelection'>, 'config': {'title': 'OptionDefaultCameraCenterToSelection'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToSelection'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToSelection:94248694249200', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_center_to_selection.DefaultCameraCenterToSelection'>, 'config': {'title': 'DefaultCameraCenterToSelection'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_center_to_selection.DefaultCameraCenterToSelection'>>]}, 'ref': 'kittycad.models.default_camera_center_to_selection.DefaultCameraCenterToSelection:94248686562208', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraCenterToSelection', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_center_to_selection', 'schema': {'expected': ['default_camera_center_to_selection'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraCenterToSelection', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraCenterToSelection, required=True), 'type': FieldInfo(annotation=Literal['default_camera_center_to_selection'], required=False, default='default_camera_center_to_selection')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf0f6f0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ea3af0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_center_to_selection",                                             },                                             expected_py: None,                                             name: "literal['default_camera_center_to_selection']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7baba0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraCenterToSelection",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraCenterToSelection",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraCenterToSelection", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1ea00,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1e010,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraCenterToSelection",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7baba0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "DefaultCameraCenterToSelection",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1e100,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1e970,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ea3af0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_center_to_selection": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c60280,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ea3af0,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_center_to_selection'",                                         name: "literal['default_camera_center_to_selection']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_center_to_selection']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraCenterToSelection",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf0f6f0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDefaultCameraCenterToSelection",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_center_to_selection.DefaultCameraCenterToSelection, type: Literal['default_camera_center_to_selection'] = 'default_camera_center_to_selection') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraCenterToSelection[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraCenterToSelection, required=True), 'type': FieldInfo(annotation=Literal['default_camera_center_to_selection'], required=False, default='default_camera_center_to_selection')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_center_to_selection'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraFocusOn(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_focus_on.DefaultCameraFocusOn'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_focus_on']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraFocusOn'>, 'config': {'title': 'OptionDefaultCameraFocusOn'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraFocusOn'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraFocusOn:94248694655840', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_focus_on.DefaultCameraFocusOn'>, 'config': {'title': 'DefaultCameraFocusOn'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_focus_on.DefaultCameraFocusOn'>>]}, 'ref': 'kittycad.models.default_camera_focus_on.DefaultCameraFocusOn:94248686565760', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraFocusOn', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_focus_on', 'schema': {'expected': ['default_camera_focus_on'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraFocusOn', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraFocusOn, required=True), 'type': FieldInfo(annotation=Literal['default_camera_focus_on'], required=False, default='default_camera_focus_on')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf72b60,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7bb980,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraFocusOn",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4539470,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_focus_on",                                             },                                             expected_py: None,                                             name: "literal['default_camera_focus_on']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraFocusOn",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraFocusOn", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6cae0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6ca20,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraFocusOn",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7bb980,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "DefaultCameraFocusOn",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6ca50,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6d710,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4539470,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_focus_on": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c918c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4539470,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_focus_on'",                                         name: "literal['default_camera_focus_on']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_focus_on']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraFocusOn",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf72b60,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDefaultCameraFocusOn",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_focus_on.DefaultCameraFocusOn, type: Literal['default_camera_focus_on'] = 'default_camera_focus_on') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraFocusOn[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraFocusOn, required=True), 'type': FieldInfo(annotation=Literal['default_camera_focus_on'], required=False, default='default_camera_focus_on')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_focus_on'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraGetSettings(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_get_settings.DefaultCameraGetSettings'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_get_settings']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraGetSettings'>, 'config': {'title': 'OptionDefaultCameraGetSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraGetSettings'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraGetSettings:94248694482624', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_get_settings.DefaultCameraGetSettings'>, 'config': {'title': 'DefaultCameraGetSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_get_settings.DefaultCameraGetSettings'>>]}, 'ref': 'kittycad.models.default_camera_get_settings.DefaultCameraGetSettings:94248686582640', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94248672388800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94248672379872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'DefaultCameraGetSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_get_settings', 'schema': {'expected': ['default_camera_get_settings'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraGetSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraGetSettings, required=True), 'type': FieldInfo(annotation=Literal['default_camera_get_settings'], required=False, default='default_camera_get_settings')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf486c0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7bfb70,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007f40b6b205b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x000055b7faa366c0,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d4330,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e06130,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b6249620,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e062b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7508150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d43b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x000055b7faa343e0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraGetSettings",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ea35a0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_get_settings",                                             },                                             expected_py: None,                                             name: "literal['default_camera_get_settings']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraGetSettings",     }, ), definitions=[Model(ModelSerializer { class: Py(0x55b7fa90b760), serializer: Fields(GeneralFieldsSerializer { fields: {"y": SerField { key_py: Py(0x7f40b7c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7f40b7c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7f40b7c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraGetSettings", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1dfb0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1ecd0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007f40b2c762b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007f40b2c83cf0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b6b205b0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007f40b2da8450,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007f40b2dab5a0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7508150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007f40b2dabed0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007f40b2e1fcf0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e06130,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007f40b2e346f0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007f40b349a6f0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d43b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007f40b7c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x000055b7faa343e0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007f40b2e1fdb0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007f40b2e1ec70,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e062b0,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007f40b2c77370,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007f40b2c759b0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d4330,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007f40b2e1e460,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007f40b2e1fd50,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007f40b2e1fd80,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007f40b2e1fcc0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b6249620,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x000055b7faa366c0,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "DefaultCameraGetSettings",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7bfb70,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "DefaultCameraGetSettings",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1ed30,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1e8b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ea35a0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_get_settings": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c81200,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ea35a0,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_get_settings'",                                         name: "literal['default_camera_get_settings']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_get_settings']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraGetSettings",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf486c0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDefaultCameraGetSettings",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7f40b7c24420), path: LookupPath([S("x", Py(0x7f40b7c24420))]) }, name_py: Py(0x7f40b7c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7f40b7c24450), path: LookupPath([S("y", Py(0x7f40b7c24450))]) }, name_py: Py(0x7f40b7c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7f40b7c24480), path: LookupPath([S("z", Py(0x7f40b7c24480))]) }, name_py: Py(0x7f40b7c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b7fa90b760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7f40b5be63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_get_settings.DefaultCameraGetSettings, type: Literal['default_camera_get_settings'] = 'default_camera_get_settings') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraGetSettings[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraGetSettings, required=True), 'type': FieldInfo(annotation=Literal['default_camera_get_settings'], required=False, default='default_camera_get_settings')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_get_settings'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraLookAt(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_look_at.DefaultCameraLookAt'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_look_at']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraLookAt'>, 'config': {'title': 'OptionDefaultCameraLookAt'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraLookAt'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraLookAt:94248693831104', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_look_at.DefaultCameraLookAt'>, 'config': {'title': 'DefaultCameraLookAt'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_look_at.DefaultCameraLookAt'>>]}, 'ref': 'kittycad.models.default_camera_look_at.DefaultCameraLookAt:94248686605200', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraLookAt', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_look_at', 'schema': {'expected': ['default_camera_look_at'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraLookAt', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraLookAt, required=True), 'type': FieldInfo(annotation=Literal['default_camera_look_at'], required=False, default='default_camera_look_at')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbea95c0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4538b70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_look_at",                                             },                                             expected_py: None,                                             name: "literal['default_camera_look_at']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7c5390,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraLookAt",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraLookAt",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraLookAt", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40570,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c405a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraLookAt",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7c5390,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "DefaultCameraLookAt",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c405d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40600,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4538b70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_look_at": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd4940,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4538b70,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_look_at'",                                         name: "literal['default_camera_look_at']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_look_at']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraLookAt",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbea95c0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDefaultCameraLookAt",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_look_at.DefaultCameraLookAt, type: Literal['default_camera_look_at'] = 'default_camera_look_at') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraLookAt[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraLookAt, required=True), 'type': FieldInfo(annotation=Literal['default_camera_look_at'], required=False, default='default_camera_look_at')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_look_at'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraPerspectiveSettings(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_perspective_settings.DefaultCameraPerspectiveSettings'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_perspective_settings']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraPerspectiveSettings'>, 'config': {'title': 'OptionDefaultCameraPerspectiveSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraPerspectiveSettings'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraPerspectiveSettings:94248693840528', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_perspective_settings.DefaultCameraPerspectiveSettings'>, 'config': {'title': 'DefaultCameraPerspectiveSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_perspective_settings.DefaultCameraPerspectiveSettings'>>]}, 'ref': 'kittycad.models.default_camera_perspective_settings.DefaultCameraPerspectiveSettings:94248686610640', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraPerspectiveSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_perspective_settings', 'schema': {'expected': ['default_camera_perspective_settings'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraPerspectiveSettings', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraPerspectiveSettings, required=True), 'type': FieldInfo(annotation=Literal['default_camera_perspective_settings'], required=False, default='default_camera_perspective_settings')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeaba90,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ea0940,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_perspective_settings",                                             },                                             expected_py: None,                                             name: "literal['default_camera_perspective_settings']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7c68d0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraPerspectiveSettings",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraPerspectiveSettings",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraPerspectiveSettings", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2dabf60,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2dabea0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraPerspectiveSettings",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7c68d0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "DefaultCameraPerspectiveSettings",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dabf90,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2dabf30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ea0940,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_perspective_settings": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd9940,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ea0940,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_perspective_settings'",                                         name: "literal['default_camera_perspective_settings']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_perspective_settings']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraPerspectiveSettings",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeaba90,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDefaultCameraPerspectiveSettings",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_perspective_settings.DefaultCameraPerspectiveSettings, type: Literal['default_camera_perspective_settings'] = 'default_camera_perspective_settings') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraPerspectiveSettings[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraPerspectiveSettings, required=True), 'type': FieldInfo(annotation=Literal['default_camera_perspective_settings'], required=False, default='default_camera_perspective_settings')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_perspective_settings'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetOrthographic(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_set_orthographic.DefaultCameraSetOrthographic'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_set_orthographic']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetOrthographic'>, 'config': {'title': 'OptionDefaultCameraSetOrthographic'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetOrthographic'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetOrthographic:94248694230016', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_set_orthographic.DefaultCameraSetOrthographic'>, 'config': {'title': 'DefaultCameraSetOrthographic'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_set_orthographic.DefaultCameraSetOrthographic'>>]}, 'ref': 'kittycad.models.default_camera_set_orthographic.DefaultCameraSetOrthographic:94248686613056', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraSetOrthographic', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_set_orthographic', 'schema': {'expected': ['default_camera_set_orthographic'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraSetOrthographic', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraSetOrthographic, required=True), 'type': FieldInfo(annotation=Literal['default_camera_set_orthographic'], required=False, default='default_camera_set_orthographic')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf0ac00,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7c7240,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraSetOrthographic",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ea3730,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_set_orthographic",                                             },                                             expected_py: None,                                             name: "literal['default_camera_set_orthographic']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraSetOrthographic",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraSetOrthographic", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1f690,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1f720,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraSetOrthographic",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7c7240,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "DefaultCameraSetOrthographic",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1f6f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f540,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ea3730,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_set_orthographic": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c5e4c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ea3730,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_set_orthographic'",                                         name: "literal['default_camera_set_orthographic']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_set_orthographic']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraSetOrthographic",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf0ac00,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDefaultCameraSetOrthographic",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_set_orthographic.DefaultCameraSetOrthographic, type: Literal['default_camera_set_orthographic'] = 'default_camera_set_orthographic') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraSetOrthographic[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraSetOrthographic, required=True), 'type': FieldInfo(annotation=Literal['default_camera_set_orthographic'], required=False, default='default_camera_set_orthographic')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_set_orthographic'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetPerspective(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_set_perspective.DefaultCameraSetPerspective'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_set_perspective']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetPerspective'>, 'config': {'title': 'OptionDefaultCameraSetPerspective'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetPerspective'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetPerspective:94248694240144', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_set_perspective.DefaultCameraSetPerspective'>, 'config': {'title': 'DefaultCameraSetPerspective'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_set_perspective.DefaultCameraSetPerspective'>>]}, 'ref': 'kittycad.models.default_camera_set_perspective.DefaultCameraSetPerspective:94248686615984', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraSetPerspective', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_set_perspective', 'schema': {'expected': ['default_camera_set_perspective'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraSetPerspective', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraSetPerspective, required=True), 'type': FieldInfo(annotation=Literal['default_camera_set_perspective'], required=False, default='default_camera_set_perspective')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf0d390,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4017640,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_set_perspective",                                             },                                             expected_py: None,                                             name: "literal['default_camera_set_perspective']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7c7db0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraSetPerspective",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraSetPerspective",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraSetPerspective", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1f150,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1f120,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraSetPerspective",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7c7db0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "DefaultCameraSetPerspective",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1e940,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f0f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4017640,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_set_perspective": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c5f3c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4017640,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_set_perspective'",                                         name: "literal['default_camera_set_perspective']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_set_perspective']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraSetPerspective",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf0d390,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDefaultCameraSetPerspective",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_set_perspective.DefaultCameraSetPerspective, type: Literal['default_camera_set_perspective'] = 'default_camera_set_perspective') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraSetPerspective[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraSetPerspective, required=True), 'type': FieldInfo(annotation=Literal['default_camera_set_perspective'], required=False, default='default_camera_set_perspective')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_set_perspective'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraZoom(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_zoom.DefaultCameraZoom'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_zoom']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraZoom'>, 'config': {'title': 'OptionDefaultCameraZoom'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraZoom'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraZoom:94248694520256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_zoom.DefaultCameraZoom'>, 'config': {'title': 'DefaultCameraZoom'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_zoom.DefaultCameraZoom'>>]}, 'ref': 'kittycad.models.default_camera_zoom.DefaultCameraZoom:94248686618528', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94248672388800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94248672379872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'DefaultCameraZoom', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_zoom', 'schema': {'expected': ['default_camera_zoom'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraZoom', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraZoom, required=True), 'type': FieldInfo(annotation=Literal['default_camera_zoom'], required=False, default='default_camera_zoom')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf519c0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7c87a0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007f40b6b205b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x000055b7faa366c0,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e06130,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d43b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x000055b7faa343e0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b6249620,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e062b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d4330,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7508150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraZoom",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4538f30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_zoom",                                             },                                             expected_py: None,                                             name: "literal['default_camera_zoom']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraZoom",     }, ), definitions=[Model(ModelSerializer { class: Py(0x55b7fa90b760), serializer: Fields(GeneralFieldsSerializer { fields: {"x": SerField { key_py: Py(0x7f40b7c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7f40b7c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7f40b7c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraZoom", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c41500,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c412f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007f40b2c90470,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007f40b2c904b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b6b205b0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007f40b2e1ff90,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007f40b2c41110,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7508150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007f40b2c413e0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007f40b2c41470,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e06130,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007f40b2c903b0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007f40b2c90370,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d43b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007f40b7c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x000055b7faa343e0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007f40b2c41320,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007f40b2c40900,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e062b0,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007f40b2c90430,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007f40b2c903f0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d4330,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007f40b2c40960,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007f40b2c414a0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007f40b2c40cc0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007f40b2c411d0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b6249620,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x000055b7faa366c0,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "DefaultCameraZoom",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7c87a0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "DefaultCameraZoom",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c408d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40810,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4538f30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_zoom": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c90500,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4538f30,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_zoom'",                                         name: "literal['default_camera_zoom']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_zoom']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraZoom",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf519c0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDefaultCameraZoom",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7f40b7c24420), path: LookupPath([S("x", Py(0x7f40b7c24420))]) }, name_py: Py(0x7f40b7c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7f40b7c24450), path: LookupPath([S("y", Py(0x7f40b7c24450))]) }, name_py: Py(0x7f40b7c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7f40b7c24480), path: LookupPath([S("z", Py(0x7f40b7c24480))]) }, name_py: Py(0x7f40b7c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b7fa90b760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7f40b5be63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_zoom.DefaultCameraZoom, type: Literal['default_camera_zoom'] = 'default_camera_zoom') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraZoom[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraZoom, required=True), 'type': FieldInfo(annotation=Literal['default_camera_zoom'], required=False, default='default_camera_zoom')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_zoom'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDensity(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.density.Density'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['density']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDensity'>, 'config': {'title': 'OptionDensity'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDensity'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDensity:94248695082848', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.density.Density'>, 'config': {'title': 'Density'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.density.Density'>>]}, 'ref': 'kittycad.models.density.Density:94248686649312', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'density': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'output_unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitDensity'>, 'members': [UnitDensity.LB_FT3, UnitDensity.KG_M3], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_density.UnitDensity:94248683999376', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}}, 'model_name': 'Density', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'density', 'schema': {'expected': ['density'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDensity', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Density, required=True), 'type': FieldInfo(annotation=Literal['density'], required=False, default='density')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfdaf60,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4d5c810,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "density",                                             },                                             expected_py: None,                                             name: "literal['density']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7cffe0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "density": SerField {                                                     key_py: Py(                                                         0x00007f40b4d5c810,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "output_unit": SerField {                                                     key_py: Py(                                                         0x00007f40b3530770,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x000055b7fb549090,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Density",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDensity",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDensity", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2cdc9c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2cdc9f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "density",                                                 lookup_key: Simple {                                                     key: "density",                                                     py_key: Py(                                                         0x00007f40b2cdc960,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "density",                                                                 Py(                                                                     0x00007f40b2cdc990,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b4d5c810,                                                 ),                                                 validator: Float(                                                     FloatValidator {                                                         strict: false,                                                         allow_inf_nan: true,                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "output_unit",                                                 lookup_key: Simple {                                                     key: "output_unit",                                                     py_key: Py(                                                         0x00007f40b2ce7470,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "output_unit",                                                                 Py(                                                                     0x00007f40b2ce7430,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3530770,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x000055b7fb549090,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "kg:m3": 1,                                                                     "lb:ft3": 0,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007f40b2ce73c0,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007f40b34bdaf0,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bdb50,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'lb:ft3' or 'kg:m3'",                                                         strict: false,                                                         class_repr: "UnitDensity",                                                         name: "str-enum[UnitDensity]",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Density",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7cffe0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Density",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2cdca20,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2cdca50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4d5c810,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "density": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ce74c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4d5c810,                                                 ),                                             ],                                         },                                         expected_repr: "'density'",                                         name: "literal['density']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['density']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDensity",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfdaf60,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDensity",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.density.Density, type: Literal['density'] = 'density') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Density[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Density, required=True), 'type': FieldInfo(annotation=Literal['density'], required=False, default='density')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['density'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDisableDryRun(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.disable_dry_run.DisableDryRun'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['disable_dry_run']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDisableDryRun'>, 'config': {'title': 'OptionDisableDryRun'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDisableDryRun'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDisableDryRun:94248694083184', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.disable_dry_run.DisableDryRun'>, 'config': {'title': 'DisableDryRun'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.disable_dry_run.DisableDryRun'>>]}, 'ref': 'kittycad.models.disable_dry_run.DisableDryRun:94248686692720', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DisableDryRun', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'disable_dry_run', 'schema': {'expected': ['disable_dry_run'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDisableDryRun', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DisableDryRun, required=True), 'type': FieldInfo(annotation=Literal['disable_dry_run'], required=False, default='disable_dry_run')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbee6e70,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4539230,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "disable_dry_run",                                             },                                             expected_py: None,                                             name: "literal['disable_dry_run']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7da970,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DisableDryRun",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDisableDryRun",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDisableDryRun", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40120,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c404b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DisableDryRun",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7da970,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "DisableDryRun",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c411a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c41140,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4539230,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "disable_dry_run": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c48bc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4539230,                                                 ),                                             ],                                         },                                         expected_repr: "'disable_dry_run'",                                         name: "literal['disable_dry_run']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['disable_dry_run']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDisableDryRun",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbee6e70,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionDisableDryRun",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.disable_dry_run.DisableDryRun, type: Literal['disable_dry_run'] = 'disable_dry_run') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DisableDryRun[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DisableDryRun, required=True), 'type': FieldInfo(annotation=Literal['disable_dry_run'], required=False, default='disable_dry_run')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['disable_dry_run'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEdgeLinesVisible(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.edge_lines_visible.EdgeLinesVisible'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['edge_lines_visible']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEdgeLinesVisible'>, 'config': {'title': 'OptionEdgeLinesVisible'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEdgeLinesVisible'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEdgeLinesVisible:94248693943392', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.edge_lines_visible.EdgeLinesVisible'>, 'config': {'title': 'EdgeLinesVisible'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.edge_lines_visible.EdgeLinesVisible'>>]}, 'ref': 'kittycad.models.edge_lines_visible.EdgeLinesVisible:94248686773808', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EdgeLinesVisible', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'edge_lines_visible', 'schema': {'expected': ['edge_lines_visible'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEdgeLinesVisible', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EdgeLinesVisible, required=True), 'type': FieldInfo(annotation=Literal['edge_lines_visible'], required=False, default='edge_lines_visible')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbec4c60,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4539670,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "edge_lines_visible",                                             },                                             expected_py: None,                                             name: "literal['edge_lines_visible']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7ee630,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EdgeLinesVisible",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEdgeLinesVisible",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEdgeLinesVisible", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40bd0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c40c60,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EdgeLinesVisible",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7ee630,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EdgeLinesVisible",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40c30,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40cf0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4539670,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "edge_lines_visible": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dc07c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4539670,                                                 ),                                             ],                                         },                                         expected_repr: "'edge_lines_visible'",                                         name: "literal['edge_lines_visible']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['edge_lines_visible']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEdgeLinesVisible",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbec4c60,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEdgeLinesVisible",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.edge_lines_visible.EdgeLinesVisible, type: Literal['edge_lines_visible'] = 'edge_lines_visible') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EdgeLinesVisible[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EdgeLinesVisible, required=True), 'type': FieldInfo(annotation=Literal['edge_lines_visible'], required=False, default='edge_lines_visible')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['edge_lines_visible'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEmpty(**data)[source][source]

An empty response, used for any command that does not explicitly have a response defined here.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['empty']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEmpty'>, 'config': {'title': 'OptionEmpty'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEmpty'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEmpty:94248693722208', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'type': {'metadata': {}, 'schema': {'default': 'empty', 'schema': {'expected': ['empty'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEmpty', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'type': FieldInfo(annotation=Literal['empty'], required=False, default='empty')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbe8ec60,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b7b8f160,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "empty",                                             },                                             expected_py: None,                                             name: "literal['empty']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 1,             },         ),         has_extra: false,         root_model: false,         name: "OptionEmpty",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEmpty", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2da8480,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da81b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b7b8f160,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "empty": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2de0680,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b7b8f160,                                                 ),                                             ],                                         },                                         expected_repr: "'empty'",                                         name: "literal['empty']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['empty']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEmpty",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbe8ec60,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEmpty",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, type: Literal['empty'] = 'empty') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'type': FieldInfo(annotation=Literal['empty'], required=False, default='empty')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['empty'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEnableDryRun(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.enable_dry_run.EnableDryRun'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['enable_dry_run']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEnableDryRun'>, 'config': {'title': 'OptionEnableDryRun'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEnableDryRun'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEnableDryRun:94248694073824', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.enable_dry_run.EnableDryRun'>, 'config': {'title': 'EnableDryRun'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.enable_dry_run.EnableDryRun'>>]}, 'ref': 'kittycad.models.enable_dry_run.EnableDryRun:94248672624640', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EnableDryRun', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'enable_dry_run', 'schema': {'expected': ['enable_dry_run'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEnableDryRun', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EnableDryRun, required=True), 'type': FieldInfo(annotation=Literal['enable_dry_run'], required=False, default='enable_dry_run')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbee49e0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7faa70000,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EnableDryRun",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b45397f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "enable_dry_run",                                             },                                             expected_py: None,                                             name: "literal['enable_dry_run']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEnableDryRun",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEnableDryRun", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c414d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c41590,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EnableDryRun",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7faa70000,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EnableDryRun",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40450,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c41080,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b45397f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "enable_dry_run": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dc3700,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b45397f0,                                                 ),                                             ],                                         },                                         expected_repr: "'enable_dry_run'",                                         name: "literal['enable_dry_run']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['enable_dry_run']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEnableDryRun",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbee49e0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEnableDryRun",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.enable_dry_run.EnableDryRun, type: Literal['enable_dry_run'] = 'enable_dry_run') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EnableDryRun[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EnableDryRun, required=True), 'type': FieldInfo(annotation=Literal['enable_dry_run'], required=False, default='enable_dry_run')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['enable_dry_run'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEnableSketchMode(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.enable_sketch_mode.EnableSketchMode'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['enable_sketch_mode']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEnableSketchMode'>, 'config': {'title': 'OptionEnableSketchMode'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEnableSketchMode'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEnableSketchMode:94248694101664', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.enable_sketch_mode.EnableSketchMode'>, 'config': {'title': 'EnableSketchMode'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.enable_sketch_mode.EnableSketchMode'>>]}, 'ref': 'kittycad.models.enable_sketch_mode.EnableSketchMode:94248686788864', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EnableSketchMode', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'enable_sketch_mode', 'schema': {'expected': ['enable_sketch_mode'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEnableSketchMode', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EnableSketchMode, required=True), 'type': FieldInfo(annotation=Literal['enable_sketch_mode'], required=False, default='enable_sketch_mode')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeeb6a0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b400b770,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "enable_sketch_mode",                                             },                                             expected_py: None,                                             name: "literal['enable_sketch_mode']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7f2100,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EnableSketchMode",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEnableSketchMode",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEnableSketchMode", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1e3a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1e370,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EnableSketchMode",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7f2100,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EnableSketchMode",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1df80,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1e0a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b400b770,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "enable_sketch_mode": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c4a840,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b400b770,                                                 ),                                             ],                                         },                                         expected_repr: "'enable_sketch_mode'",                                         name: "literal['enable_sketch_mode']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['enable_sketch_mode']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEnableSketchMode",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeeb6a0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEnableSketchMode",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.enable_sketch_mode.EnableSketchMode, type: Literal['enable_sketch_mode'] = 'enable_sketch_mode') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EnableSketchMode[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EnableSketchMode, required=True), 'type': FieldInfo(annotation=Literal['enable_sketch_mode'], required=False, default='enable_sketch_mode')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['enable_sketch_mode'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEngineUtilEvaluatePath(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.engine_util_evaluate_path.EngineUtilEvaluatePath'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['engine_util_evaluate_path']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEngineUtilEvaluatePath'>, 'config': {'title': 'OptionEngineUtilEvaluatePath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEngineUtilEvaluatePath'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEngineUtilEvaluatePath:94248693728720', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.engine_util_evaluate_path.EngineUtilEvaluatePath'>, 'config': {'title': 'EngineUtilEvaluatePath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.engine_util_evaluate_path.EngineUtilEvaluatePath'>>]}, 'ref': 'kittycad.models.engine_util_evaluate_path.EngineUtilEvaluatePath:94248686792112', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'pos': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'EngineUtilEvaluatePath', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'engine_util_evaluate_path', 'schema': {'expected': ['engine_util_evaluate_path'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEngineUtilEvaluatePath', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EngineUtilEvaluatePath, required=True), 'type': FieldInfo(annotation=Literal['engine_util_evaluate_path'], required=False, default='engine_util_evaluate_path')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbe905d0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7f2db0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "pos": SerField {                                                     key_py: Py(                                                         0x00007f40b7c210d8,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x000055b7fa90b760,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "y": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24450,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "z": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24480,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "x": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24420,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 3,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "Point3d",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EngineUtilEvaluatePath",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef5020,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "engine_util_evaluate_path",                                             },                                             expected_py: None,                                             name: "literal['engine_util_evaluate_path']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEngineUtilEvaluatePath",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEngineUtilEvaluatePath", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2da93b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da9470,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "pos",                                                 lookup_key: Simple {                                                     key: "pos",                                                     py_key: Py(                                                         0x00007f40b2da8cf0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "pos",                                                                 Py(                                                                     0x00007f40b2da90b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c210d8,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "x",                                                                         lookup_key: Simple {                                                                             key: "x",                                                                             py_key: Py(                                                                                 0x00007f40b7c24420,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "x",                                                                                         Py(                                                                                             0x00007f40b7c24420,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24420,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "y",                                                                         lookup_key: Simple {                                                                             key: "y",                                                                             py_key: Py(                                                                                 0x00007f40b7c24450,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "y",                                                                                         Py(                                                                                             0x00007f40b7c24450,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24450,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "z",                                                                         lookup_key: Simple {                                                                             key: "z",                                                                             py_key: Py(                                                                                 0x00007f40b7c24480,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "z",                                                                                         Py(                                                                                             0x00007f40b7c24480,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24480,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "Point3d",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x000055b7fa90b760,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                         name: "Point3d",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EngineUtilEvaluatePath",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7f2db0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EngineUtilEvaluatePath",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2da9230,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da9260,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef5020,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "engine_util_evaluate_path": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2de1cc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef5020,                                                 ),                                             ],                                         },                                         expected_repr: "'engine_util_evaluate_path'",                                         name: "literal['engine_util_evaluate_path']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['engine_util_evaluate_path']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEngineUtilEvaluatePath",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbe905d0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEngineUtilEvaluatePath",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.engine_util_evaluate_path.EngineUtilEvaluatePath, type: Literal['engine_util_evaluate_path'] = 'engine_util_evaluate_path') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EngineUtilEvaluatePath[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EngineUtilEvaluatePath, required=True), 'type': FieldInfo(annotation=Literal['engine_util_evaluate_path'], required=False, default='engine_util_evaluate_path')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['engine_util_evaluate_path'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityCircularPattern(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_circular_pattern.EntityCircularPattern'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_circular_pattern']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityCircularPattern'>, 'config': {'title': 'OptionEntityCircularPattern'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityCircularPattern'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityCircularPattern:94248695186768', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_circular_pattern.EntityCircularPattern'>, 'config': {'title': 'EntityCircularPattern'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_circular_pattern.EntityCircularPattern'>>]}, 'ref': 'kittycad.models.entity_circular_pattern.EntityCircularPattern:94248686850528', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'EntityCircularPattern', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_circular_pattern', 'schema': {'expected': ['entity_circular_pattern'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityCircularPattern', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityCircularPattern, required=True), 'type': FieldInfo(annotation=Literal['entity_circular_pattern'], required=False, default='entity_circular_pattern')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbff4550,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b400b030,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_circular_pattern",                                             },                                             expected_py: None,                                             name: "literal['entity_circular_pattern']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8011e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007f40b3251230,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityCircularPattern",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityCircularPattern",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityCircularPattern", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2cdd4a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2cdd4d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007f40b2cf9d30,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007f40b2cf9cf0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3251230,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityCircularPattern",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8011e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityCircularPattern",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2cdd500,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2cdd530,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b400b030,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_circular_pattern": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cf9d80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b400b030,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_circular_pattern'",                                         name: "literal['entity_circular_pattern']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_circular_pattern']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityCircularPattern",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbff4550,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityCircularPattern",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_circular_pattern.EntityCircularPattern, type: Literal['entity_circular_pattern'] = 'entity_circular_pattern') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityCircularPattern[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityCircularPattern, required=True), 'type': FieldInfo(annotation=Literal['entity_circular_pattern'], required=False, default='entity_circular_pattern')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_circular_pattern'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityFade(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_fade.EntityFade'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_fade']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityFade'>, 'config': {'title': 'OptionEntityFade'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityFade'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityFade:94248694017984', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_fade.EntityFade'>, 'config': {'title': 'EntityFade'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_fade.EntityFade'>>]}, 'ref': 'kittycad.models.entity_fade.EntityFade:94248686855168', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EntityFade', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_fade', 'schema': {'expected': ['entity_fade'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityFade', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityFade, required=True), 'type': FieldInfo(annotation=Literal['entity_fade'], required=False, default='entity_fade')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbed6fc0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b400ac70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_fade",                                             },                                             expected_py: None,                                             name: "literal['entity_fade']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb802400,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityFade",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityFade",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityFade", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2da89f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da9c20,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EntityFade",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb802400,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityFade",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2da9560,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2daa850,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b400ac70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_fade": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c34840,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b400ac70,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_fade'",                                         name: "literal['entity_fade']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_fade']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityFade",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbed6fc0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityFade",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_fade.EntityFade, type: Literal['entity_fade'] = 'entity_fade') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityFade[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityFade, required=True), 'type': FieldInfo(annotation=Literal['entity_fade'], required=False, default='entity_fade')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_fade'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetAllChildUuids(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_all_child_uuids.EntityGetAllChildUuids'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_all_child_uuids']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetAllChildUuids'>, 'config': {'title': 'OptionEntityGetAllChildUuids'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetAllChildUuids'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetAllChildUuids:94248694360400', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_all_child_uuids.EntityGetAllChildUuids'>, 'config': {'title': 'EntityGetAllChildUuids'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_all_child_uuids.EntityGetAllChildUuids'>>]}, 'ref': 'kittycad.models.entity_get_all_child_uuids.EntityGetAllChildUuids:94248686857632', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'EntityGetAllChildUuids', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_all_child_uuids', 'schema': {'expected': ['entity_get_all_child_uuids'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetAllChildUuids', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetAllChildUuids, required=True), 'type': FieldInfo(annotation=Literal['entity_get_all_child_uuids'], required=False, default='entity_get_all_child_uuids')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf2a950,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef41c0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_all_child_uuids",                                             },                                             expected_py: None,                                             name: "literal['entity_get_all_child_uuids']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb802da0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007f40b3251230,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetAllChildUuids",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetAllChildUuids",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetAllChildUuids", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6c720,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6c750,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007f40b2c77f70,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007f40b2c77f30,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3251230,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetAllChildUuids",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb802da0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityGetAllChildUuids",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6c780,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6c7b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef41c0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_all_child_uuids": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c80040,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef41c0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_all_child_uuids'",                                         name: "literal['entity_get_all_child_uuids']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_all_child_uuids']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetAllChildUuids",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf2a950,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityGetAllChildUuids",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_all_child_uuids.EntityGetAllChildUuids, type: Literal['entity_get_all_child_uuids'] = 'entity_get_all_child_uuids') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetAllChildUuids[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetAllChildUuids, required=True), 'type': FieldInfo(annotation=Literal['entity_get_all_child_uuids'], required=False, default='entity_get_all_child_uuids')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_all_child_uuids'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetChildUuid(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_child_uuid.EntityGetChildUuid'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_child_uuid']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetChildUuid'>, 'config': {'title': 'OptionEntityGetChildUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetChildUuid'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetChildUuid:94248694326064', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_child_uuid.EntityGetChildUuid'>, 'config': {'title': 'EntityGetChildUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_child_uuid.EntityGetChildUuid'>>]}, 'ref': 'kittycad.models.entity_get_child_uuid.EntityGetChildUuid:94248686865248', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'EntityGetChildUuid', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_child_uuid', 'schema': {'expected': ['entity_get_child_uuid'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetChildUuid', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetChildUuid, required=True), 'type': FieldInfo(annotation=Literal['entity_get_child_uuid'], required=False, default='entity_get_child_uuid')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf22330,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb804b60,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_id": SerField {                                                     key_py: Py(                                                         0x00007f40b3245eb0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetChildUuid",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b400b2f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_child_uuid",                                             },                                             expected_py: None,                                             name: "literal['entity_get_child_uuid']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetChildUuid",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetChildUuid", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40030,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c40990,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_id",                                                 lookup_key: Simple {                                                     key: "entity_id",                                                     py_key: Py(                                                         0x00007f40b2c74db0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_id",                                                                 Py(                                                                     0x00007f40b2c74d70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3245eb0,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetChildUuid",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb804b60,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityGetChildUuid",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c409c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c41020,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b400b2f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_child_uuid": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c74e00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b400b2f0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_child_uuid'",                                         name: "literal['entity_get_child_uuid']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_child_uuid']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetChildUuid",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf22330,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityGetChildUuid",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_child_uuid.EntityGetChildUuid, type: Literal['entity_get_child_uuid'] = 'entity_get_child_uuid') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetChildUuid[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetChildUuid, required=True), 'type': FieldInfo(annotation=Literal['entity_get_child_uuid'], required=False, default='entity_get_child_uuid')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_child_uuid'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetDistance(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_distance.EntityGetDistance'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_distance']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetDistance'>, 'config': {'title': 'OptionEntityGetDistance'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetDistance'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetDistance:94248695148576', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_distance.EntityGetDistance'>, 'config': {'title': 'EntityGetDistance'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_distance.EntityGetDistance'>>]}, 'ref': 'kittycad.models.entity_get_distance.EntityGetDistance:94248686870272', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'max_distance': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}, 'min_distance': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}}, 'model_name': 'EntityGetDistance', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_distance', 'schema': {'expected': ['entity_get_distance'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetDistance', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetDistance, required=True), 'type': FieldInfo(annotation=Literal['entity_get_distance'], required=False, default='entity_get_distance')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfeb020,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b42029f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_distance",                                             },                                             expected_py: None,                                             name: "literal['entity_get_distance']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb805f00,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "max_distance": SerField {                                                     key_py: Py(                                                         0x00007f40b6bd97f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "min_distance": SerField {                                                     key_py: Py(                                                         0x00007f40b3246a30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetDistance",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetDistance",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetDistance", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2cdcba0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2cdcb40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "max_distance",                                                 lookup_key: Simple {                                                     key: "max_distance",                                                     py_key: Py(                                                         0x00007f40b2cf2870,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "max_distance",                                                                 Py(                                                                     0x00007f40b2cf2830,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b6bd97f0,                                                 ),                                                 validator: FunctionAfter(                                                     FunctionAfterValidator {                                                         validator: Float(                                                             FloatValidator {                                                                 strict: false,                                                                 allow_inf_nan: true,                                                             },                                                         ),                                                         func: Py(                                                             0x000055b7fb805a70,                                                         ),                                                         config: Py(                                                             0x00007f40b2cf2600,                                                         ),                                                         name: "function-after[LengthUnit(), float]",                                                         field_name: None,                                                         info_arg: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "min_distance",                                                 lookup_key: Simple {                                                     key: "min_distance",                                                     py_key: Py(                                                         0x00007f40b2cf28f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "min_distance",                                                                 Py(                                                                     0x00007f40b2cf28b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3246a30,                                                 ),                                                 validator: FunctionAfter(                                                     FunctionAfterValidator {                                                         validator: Float(                                                             FloatValidator {                                                                 strict: false,                                                                 allow_inf_nan: true,                                                             },                                                         ),                                                         func: Py(                                                             0x000055b7fb805a70,                                                         ),                                                         config: Py(                                                             0x00007f40b2cf2600,                                                         ),                                                         name: "function-after[LengthUnit(), float]",                                                         field_name: None,                                                         info_arg: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetDistance",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb805f00,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityGetDistance",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2cdcbd0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2cdcb10,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b42029f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_distance": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cf2980,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b42029f0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_distance'",                                         name: "literal['entity_get_distance']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_distance']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetDistance",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfeb020,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityGetDistance",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_distance.EntityGetDistance, type: Literal['entity_get_distance'] = 'entity_get_distance') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetDistance[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetDistance, required=True), 'type': FieldInfo(annotation=Literal['entity_get_distance'], required=False, default='entity_get_distance')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_distance'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetNumChildren(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_num_children.EntityGetNumChildren'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_num_children']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetNumChildren'>, 'config': {'title': 'OptionEntityGetNumChildren'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetNumChildren'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetNumChildren:94248694337376', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_num_children.EntityGetNumChildren'>, 'config': {'title': 'EntityGetNumChildren'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_num_children.EntityGetNumChildren'>>]}, 'ref': 'kittycad.models.entity_get_num_children.EntityGetNumChildren:94248686881296', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'num': {'metadata': {}, 'schema': {'type': 'int'}, 'type': 'model-field'}}, 'model_name': 'EntityGetNumChildren', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_num_children', 'schema': {'expected': ['entity_get_num_children'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetNumChildren', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetNumChildren, required=True), 'type': FieldInfo(annotation=Literal['entity_get_num_children'], required=False, default='entity_get_num_children')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf24f60,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b42031b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_num_children",                                             },                                             expected_py: None,                                             name: "literal['entity_get_num_children']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb808a10,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "num": SerField {                                                     key_py: Py(                                                         0x00007f40b7133810,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Int(                                                             IntSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetNumChildren",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetNumChildren",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetNumChildren", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2dabcc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2daa310,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "num",                                                 lookup_key: Simple {                                                     key: "num",                                                     py_key: Py(                                                         0x00007f40b2dab540,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "num",                                                                 Py(                                                                     0x00007f40b2dab5d0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7133810,                                                 ),                                                 validator: Int(                                                     IntValidator {                                                         strict: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetNumChildren",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb808a10,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityGetNumChildren",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dab3c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da8240,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b42031b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_num_children": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c75e40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b42031b0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_num_children'",                                         name: "literal['entity_get_num_children']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_num_children']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetNumChildren",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf24f60,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityGetNumChildren",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_num_children.EntityGetNumChildren, type: Literal['entity_get_num_children'] = 'entity_get_num_children') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetNumChildren[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetNumChildren, required=True), 'type': FieldInfo(annotation=Literal['entity_get_num_children'], required=False, default='entity_get_num_children')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_num_children'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetParentId(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_parent_id.EntityGetParentId'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_parent_id']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetParentId'>, 'config': {'title': 'OptionEntityGetParentId'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetParentId'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetParentId:94248694348960', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_parent_id.EntityGetParentId'>, 'config': {'title': 'EntityGetParentId'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_parent_id.EntityGetParentId'>>]}, 'ref': 'kittycad.models.entity_get_parent_id.EntityGetParentId:94248686886960', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'EntityGetParentId', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_parent_id', 'schema': {'expected': ['entity_get_parent_id'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetParentId', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetParentId, required=True), 'type': FieldInfo(annotation=Literal['entity_get_parent_id'], required=False, default='entity_get_parent_id')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf27ca0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4201730,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_parent_id",                                             },                                             expected_py: None,                                             name: "literal['entity_get_parent_id']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb80a030,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_id": SerField {                                                     key_py: Py(                                                         0x00007f40b3245eb0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetParentId",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetParentId",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetParentId", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6c360,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6c390,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_id",                                                 lookup_key: Simple {                                                     key: "entity_id",                                                     py_key: Py(                                                         0x00007f40b2c76eb0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_id",                                                                 Py(                                                                     0x00007f40b2c76e70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3245eb0,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetParentId",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb80a030,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityGetParentId",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6c3c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6c3f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4201730,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_parent_id": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c76f00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4201730,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_parent_id'",                                         name: "literal['entity_get_parent_id']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_parent_id']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetParentId",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf27ca0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityGetParentId",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_parent_id.EntityGetParentId, type: Literal['entity_get_parent_id'] = 'entity_get_parent_id') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetParentId[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetParentId, required=True), 'type': FieldInfo(annotation=Literal['entity_get_parent_id'], required=False, default='entity_get_parent_id')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_parent_id'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetSketchPaths(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_sketch_paths.EntityGetSketchPaths'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_sketch_paths']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetSketchPaths'>, 'config': {'title': 'OptionEntityGetSketchPaths'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetSketchPaths'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetSketchPaths:94248694372832', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_sketch_paths.EntityGetSketchPaths'>, 'config': {'title': 'EntityGetSketchPaths'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_sketch_paths.EntityGetSketchPaths'>>]}, 'ref': 'kittycad.models.entity_get_sketch_paths.EntityGetSketchPaths:94248686891440', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'EntityGetSketchPaths', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_sketch_paths', 'schema': {'expected': ['entity_get_sketch_paths'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetSketchPaths', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetSketchPaths, required=True), 'type': FieldInfo(annotation=Literal['entity_get_sketch_paths'], required=False, default='entity_get_sketch_paths')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf2d9e0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb80b1b0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007f40b3251230,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetSketchPaths",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4203230,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_sketch_paths",                                             },                                             expected_py: None,                                             name: "literal['entity_get_sketch_paths']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetSketchPaths",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetSketchPaths", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2dab9c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da8d20,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007f40b34718b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007f40b2c4b830,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3251230,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetSketchPaths",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb80b1b0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityGetSketchPaths",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2da8540,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da8d50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4203230,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_sketch_paths": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c63380,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4203230,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_sketch_paths'",                                         name: "literal['entity_get_sketch_paths']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_sketch_paths']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetSketchPaths",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf2d9e0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityGetSketchPaths",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_sketch_paths.EntityGetSketchPaths, type: Literal['entity_get_sketch_paths'] = 'entity_get_sketch_paths') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetSketchPaths[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetSketchPaths, required=True), 'type': FieldInfo(annotation=Literal['entity_get_sketch_paths'], required=False, default='entity_get_sketch_paths')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_sketch_paths'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPattern(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_linear_pattern.EntityLinearPattern'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_linear_pattern']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPattern'>, 'config': {'title': 'OptionEntityLinearPattern'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPattern'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPattern:94248695174592', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_linear_pattern.EntityLinearPattern'>, 'config': {'title': 'EntityLinearPattern'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_linear_pattern.EntityLinearPattern'>>]}, 'ref': 'kittycad.models.entity_linear_pattern.EntityLinearPattern:94248686896416', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'EntityLinearPattern', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_linear_pattern', 'schema': {'expected': ['entity_linear_pattern'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityLinearPattern', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityLinearPattern, required=True), 'type': FieldInfo(annotation=Literal['entity_linear_pattern'], required=False, default='entity_linear_pattern')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbff15c0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb80c520,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007f40b3251230,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityLinearPattern",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4200930,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_linear_pattern",                                             },                                             expected_py: None,                                             name: "literal['entity_linear_pattern']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityLinearPattern",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityLinearPattern", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2cdd0e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2cdd110,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007f40b2cf8bf0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007f40b2cf8bb0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3251230,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityLinearPattern",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb80c520,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityLinearPattern",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2cdd140,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2cdd170,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4200930,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_linear_pattern": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cf8c40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4200930,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_linear_pattern'",                                         name: "literal['entity_linear_pattern']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_linear_pattern']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityLinearPattern",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbff15c0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityLinearPattern",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_linear_pattern.EntityLinearPattern, type: Literal['entity_linear_pattern'] = 'entity_linear_pattern') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityLinearPattern[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityLinearPattern, required=True), 'type': FieldInfo(annotation=Literal['entity_linear_pattern'], required=False, default='entity_linear_pattern')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_linear_pattern'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPatternTransform(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_linear_pattern_transform.EntityLinearPatternTransform'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_linear_pattern_transform']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPatternTransform'>, 'config': {'title': 'OptionEntityLinearPatternTransform'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPatternTransform'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPatternTransform:94248695162320', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_linear_pattern_transform.EntityLinearPatternTransform'>, 'config': {'title': 'EntityLinearPatternTransform'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_linear_pattern_transform.EntityLinearPatternTransform'>>]}, 'ref': 'kittycad.models.entity_linear_pattern_transform.EntityLinearPatternTransform:94248686903920', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'EntityLinearPatternTransform', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_linear_pattern_transform', 'schema': {'expected': ['entity_linear_pattern_transform'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityLinearPatternTransform', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityLinearPatternTransform, required=True), 'type': FieldInfo(annotation=Literal['entity_linear_pattern_transform'], required=False, default='entity_linear_pattern_transform')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfee5d0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef4210,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_linear_pattern_transform",                                             },                                             expected_py: None,                                             name: "literal['entity_linear_pattern_transform']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb80e270,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007f40b3251230,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityLinearPatternTransform",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityLinearPatternTransform",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityLinearPatternTransform", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2cdc6f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2cdc4e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007f40b2cf3a70,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007f40b2cf3a30,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3251230,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityLinearPatternTransform",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb80e270,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityLinearPatternTransform",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2cdc420,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2cdc4b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef4210,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_linear_pattern_transform": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cf3ac0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef4210,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_linear_pattern_transform'",                                         name: "literal['entity_linear_pattern_transform']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_linear_pattern_transform']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityLinearPatternTransform",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfee5d0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityLinearPatternTransform",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_linear_pattern_transform.EntityLinearPatternTransform, type: Literal['entity_linear_pattern_transform'] = 'entity_linear_pattern_transform') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityLinearPatternTransform[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityLinearPatternTransform, required=True), 'type': FieldInfo(annotation=Literal['entity_linear_pattern_transform'], required=False, default='entity_linear_pattern_transform')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_linear_pattern_transform'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityMakeHelix(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_make_helix.EntityMakeHelix'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_make_helix']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMakeHelix'>, 'config': {'title': 'OptionEntityMakeHelix'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMakeHelix'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityMakeHelix:94248693850032', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_make_helix.EntityMakeHelix'>, 'config': {'title': 'EntityMakeHelix'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_make_helix.EntityMakeHelix'>>]}, 'ref': 'kittycad.models.entity_make_helix.EntityMakeHelix:94248686912736', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EntityMakeHelix', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_make_helix', 'schema': {'expected': ['entity_make_helix'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityMakeHelix', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMakeHelix, required=True), 'type': FieldInfo(annotation=Literal['entity_make_helix'], required=False, default='entity_make_helix')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeadfb0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8104e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityMakeHelix",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4201f30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_make_helix",                                             },                                             expected_py: None,                                             name: "literal['entity_make_helix']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityMakeHelix",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityMakeHelix", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2dab600,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2dab2a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EntityMakeHelix",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8104e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityMakeHelix",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2daa760,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2dab4b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4201f30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_make_helix": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b3f12f40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4201f30,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_make_helix'",                                         name: "literal['entity_make_helix']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_make_helix']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityMakeHelix",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeadfb0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityMakeHelix",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_make_helix.EntityMakeHelix, type: Literal['entity_make_helix'] = 'entity_make_helix') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityMakeHelix[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMakeHelix, required=True), 'type': FieldInfo(annotation=Literal['entity_make_helix'], required=False, default='entity_make_helix')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_make_helix'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityMirror(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_mirror.EntityMirror'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_mirror']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirror'>, 'config': {'title': 'OptionEntityMirror'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirror'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirror:94248693859424', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_mirror.EntityMirror'>, 'config': {'title': 'EntityMirror'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_mirror.EntityMirror'>>]}, 'ref': 'kittycad.models.entity_mirror.EntityMirror:94248686921168', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EntityMirror', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_mirror', 'schema': {'expected': ['entity_mirror'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityMirror', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMirror, required=True), 'type': FieldInfo(annotation=Literal['entity_mirror'], required=False, default='entity_mirror')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeb0460,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b42022f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_mirror",                                             },                                             expected_py: None,                                             name: "literal['entity_mirror']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8125d0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityMirror",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityMirror",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityMirror", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2da8270,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da8b10,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EntityMirror",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8125d0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityMirror",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dabd20,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da8c30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b42022f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_mirror": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd5040,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b42022f0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_mirror'",                                         name: "literal['entity_mirror']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_mirror']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityMirror",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeb0460,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityMirror",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_mirror.EntityMirror, type: Literal['entity_mirror'] = 'entity_mirror') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityMirror[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMirror, required=True), 'type': FieldInfo(annotation=Literal['entity_mirror'], required=False, default='entity_mirror')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_mirror'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityMirrorAcrossEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_mirror_across_edge.EntityMirrorAcrossEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_mirror_across_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirrorAcrossEdge'>, 'config': {'title': 'OptionEntityMirrorAcrossEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirrorAcrossEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirrorAcrossEdge:94248693868784', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_mirror_across_edge.EntityMirrorAcrossEdge'>, 'config': {'title': 'EntityMirrorAcrossEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_mirror_across_edge.EntityMirrorAcrossEdge'>>]}, 'ref': 'kittycad.models.entity_mirror_across_edge.EntityMirrorAcrossEdge:94248686917584', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EntityMirrorAcrossEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_mirror_across_edge', 'schema': {'expected': ['entity_mirror_across_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityMirrorAcrossEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMirrorAcrossEdge, required=True), 'type': FieldInfo(annotation=Literal['entity_mirror_across_edge'], required=False, default='entity_mirror_across_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeb28f0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef42b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_mirror_across_edge",                                             },                                             expected_py: None,                                             name: "literal['entity_mirror_across_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8117d0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityMirrorAcrossEdge",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityMirrorAcrossEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityMirrorAcrossEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2da9c80,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da9a10,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EntityMirrorAcrossEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8117d0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntityMirrorAcrossEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dab150,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2daa100,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef42b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_mirror_across_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd6100,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef42b0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_mirror_across_edge'",                                         name: "literal['entity_mirror_across_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_mirror_across_edge']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityMirrorAcrossEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeb28f0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntityMirrorAcrossEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_mirror_across_edge.EntityMirrorAcrossEdge, type: Literal['entity_mirror_across_edge'] = 'entity_mirror_across_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityMirrorAcrossEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMirrorAcrossEdge, required=True), 'type': FieldInfo(annotation=Literal['entity_mirror_across_edge'], required=False, default='entity_mirror_across_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_mirror_across_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntitySetOpacity(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_set_opacity.EntitySetOpacity'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_set_opacity']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntitySetOpacity'>, 'config': {'title': 'OptionEntitySetOpacity'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntitySetOpacity'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntitySetOpacity:94248694008864', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_set_opacity.EntitySetOpacity'>, 'config': {'title': 'EntitySetOpacity'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_set_opacity.EntitySetOpacity'>>]}, 'ref': 'kittycad.models.entity_set_opacity.EntitySetOpacity:94248686923392', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EntitySetOpacity', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_set_opacity', 'schema': {'expected': ['entity_set_opacity'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntitySetOpacity', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntitySetOpacity, required=True), 'type': FieldInfo(annotation=Literal['entity_set_opacity'], required=False, default='entity_set_opacity')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbed4c20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb812e80,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntitySetOpacity",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b42013b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_set_opacity",                                             },                                             expected_py: None,                                             name: "literal['entity_set_opacity']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntitySetOpacity",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntitySetOpacity", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2dab8a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2dab900,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EntitySetOpacity",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb812e80,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "EntitySetOpacity",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dab8d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2dab300,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b42013b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_set_opacity": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dac640,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b42013b0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_set_opacity'",                                         name: "literal['entity_set_opacity']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_set_opacity']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntitySetOpacity",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbed4c20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionEntitySetOpacity",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_set_opacity.EntitySetOpacity, type: Literal['entity_set_opacity'] = 'entity_set_opacity') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntitySetOpacity[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntitySetOpacity, required=True), 'type': FieldInfo(annotation=Literal['entity_set_opacity'], required=False, default='entity_set_opacity')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_set_opacity'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionExport(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.export.Export'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['export']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionExport'>, 'config': {'title': 'OptionExport'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionExport'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionExport:94248694278176', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.export.Export'>, 'config': {'title': 'Export'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.export.Export'>>]}, 'ref': 'kittycad.models.export.Export:94248687009392', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'files': {'metadata': {}, 'schema': {'items_schema': {'cls': <class 'kittycad.models.export_file.ExportFile'>, 'config': {'title': 'ExportFile'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.export_file.ExportFile'>>]}, 'ref': 'kittycad.models.export_file.ExportFile:94248687000208', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'contents': {'metadata': {}, 'schema': {'function': {'function': <bound method Base64Data.validate of <class 'kittycad.models.base64data.Base64Data'>>, 'type': 'no-info'}, 'schema': {'choices': [{'type': 'str'}, {'type': 'bytes'}], 'type': 'union'}, 'serialization': {'function': <bound method Base64Data.serialize of <class 'kittycad.models.base64data.Base64Data'>>, 'type': 'function-plain'}, 'type': 'function-after'}, 'type': 'model-field'}, 'name': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'ExportFile', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'Export', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'export', 'schema': {'expected': ['export'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionExport', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Export, required=True), 'type': FieldInfo(annotation=Literal['export'], required=False, default='export')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf16820,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b6494ab0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "export",                                             },                                             expected_py: None,                                             name: "literal['export']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb827e70,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "files": SerField {                                                     key_py: Py(                                                         0x00007f40b7bd6b80,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Model(                                                                     ModelSerializer {                                                                         class: Py(                                                                             0x000055b7fb825a90,                                                                         ),                                                                         serializer: Fields(                                                                             GeneralFieldsSerializer {                                                                                 fields: {                                                                                     "name": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b7c20668,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Str(                                                                                                 StrSerializer,                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "contents": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b7bda960,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Function(                                                                                                 FunctionPlainSerializer {                                                                                                     func: Py(                                                                                                         0x00007f40b31405c0,                                                                                                     ),                                                                                                     name: "plain_function[serialize]",                                                                                                     function_name: "serialize",                                                                                                     return_serializer: Any(                                                                                                         AnySerializer,                                                                                                     ),                                                                                                     fallback_serializer: None,                                                                                                     when_used: Always,                                                                                                     is_field_serializer: false,                                                                                                     info_arg: false,                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                 },                                                                                 computed_fields: Some(                                                                                     ComputedFields(                                                                                         [],                                                                                     ),                                                                                 ),                                                                                 mode: SimpleDict,                                                                                 extra_serializer: None,                                                                                 filter: SchemaFilter {                                                                                     include: None,                                                                                     exclude: None,                                                                                 },                                                                                 required_fields: 2,                                                                             },                                                                         ),                                                                         has_extra: false,                                                                         root_model: false,                                                                         name: "ExportFile",                                                                     },                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[ExportFile]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Export",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionExport",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionExport", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1fc60,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1fb40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "files",                                                 lookup_key: Simple {                                                     key: "files",                                                     py_key: Py(                                                         0x00007f40b2e1fc30,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "files",                                                                 Py(                                                                     0x00007f40b2e1fc90,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7bd6b80,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Model(                                                                 ModelValidator {                                                                     revalidate: Never,                                                                     validator: ModelFields(                                                                         ModelFieldsValidator {                                                                             fields: [                                                                                 Field {                                                                                     name: "contents",                                                                                     lookup_key: Simple {                                                                                         key: "contents",                                                                                         py_key: Py(                                                                                             0x00007f40b2f98f70,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "contents",                                                                                                     Py(                                                                                                         0x00007f40b2dedb70,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b7bda960,                                                                                     ),                                                                                     validator: FunctionAfter(                                                                                         FunctionAfterValidator {                                                                                             validator: Union(                                                                                                 UnionValidator {                                                                                                     mode: Smart,                                                                                                     choices: [                                                                                                         (                                                                                                             Str(                                                                                                                 StrValidator {                                                                                                                     strict: false,                                                                                                                     coerce_numbers_to_str: false,                                                                                                                 },                                                                                                             ),                                                                                                             None,                                                                                                         ),                                                                                                         (                                                                                                             Bytes(                                                                                                                 BytesValidator {                                                                                                                     strict: false,                                                                                                                     bytes_mode: ValBytesMode {                                                                                                                         ser: Utf8,                                                                                                                     },                                                                                                                 },                                                                                                             ),                                                                                                             None,                                                                                                         ),                                                                                                     ],                                                                                                     custom_error: None,                                                                                                     strict: false,                                                                                                     name: "union[str,bytes]",                                                                                                 },                                                                                             ),                                                                                             func: Py(                                                                                                 0x00007f40b3140540,                                                                                             ),                                                                                             config: Py(                                                                                                 0x00007f40b2c5ecc0,                                                                                             ),                                                                                             name: "function-after[validate(), union[str,bytes]]",                                                                                             field_name: None,                                                                                             info_arg: false,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "name",                                                                                     lookup_key: Simple {                                                                                         key: "name",                                                                                         py_key: Py(                                                                                             0x00007f40b2e1fc00,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "name",                                                                                                     Py(                                                                                                         0x00007f40b2e1fb10,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b7c20668,                                                                                     ),                                                                                     validator: Str(                                                                                         StrValidator {                                                                                             strict: false,                                                                                             coerce_numbers_to_str: false,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                             ],                                                                             model_name: "ExportFile",                                                                             extra_behavior: Ignore,                                                                             extras_validator: None,                                                                             strict: false,                                                                             from_attributes: false,                                                                             loc_by_alias: true,                                                                         },                                                                     ),                                                                     class: Py(                                                                         0x000055b7fb825a90,                                                                     ),                                                                     generic_origin: None,                                                                     post_init: None,                                                                     frozen: false,                                                                     custom_init: false,                                                                     root_model: false,                                                                     undefined: Py(                                                                         0x00007f40b5be63d0,                                                                     ),                                                                     name: "ExportFile",                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Export",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb827e70,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Export",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1fbd0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1fba0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b6494ab0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "export": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c5c700,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b6494ab0,                                                 ),                                             ],                                         },                                         expected_repr: "'export'",                                         name: "literal['export']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['export']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionExport",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf16820,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionExport",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.export.Export, type: Literal['export'] = 'export') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Export[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Export, required=True), 'type': FieldInfo(annotation=Literal['export'], required=False, default='export')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['export'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionExtendPath(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.extend_path.ExtendPath'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['extend_path']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionExtendPath'>, 'config': {'title': 'OptionExtendPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionExtendPath'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionExtendPath:94248693763024', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.extend_path.ExtendPath'>, 'config': {'title': 'ExtendPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.extend_path.ExtendPath'>>]}, 'ref': 'kittycad.models.extend_path.ExtendPath:94248687021744', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'ExtendPath', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'extend_path', 'schema': {'expected': ['extend_path'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionExtendPath', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ExtendPath, required=True), 'type': FieldInfo(annotation=Literal['extend_path'], required=False, default='extend_path')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbe98bd0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4368bf0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "extend_path",                                             },                                             expected_py: None,                                             name: "literal['extend_path']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb82aeb0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ExtendPath",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionExtendPath",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionExtendPath", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2dabde0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2dabe10,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "ExtendPath",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb82aeb0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ExtendPath",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dabe40,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2dabe70,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4368bf0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "extend_path": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd88c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4368bf0,                                                 ),                                             ],                                         },                                         expected_repr: "'extend_path'",                                         name: "literal['extend_path']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['extend_path']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionExtendPath",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbe98bd0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionExtendPath",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.extend_path.ExtendPath, type: Literal['extend_path'] = 'extend_path') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ExtendPath[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ExtendPath, required=True), 'type': FieldInfo(annotation=Literal['extend_path'], required=False, default='extend_path')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['extend_path'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionExtrude(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.extrude.Extrude'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['extrude']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionExtrude'>, 'config': {'title': 'OptionExtrude'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionExtrude'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionExtrude:94248693772384', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.extrude.Extrude'>, 'config': {'title': 'Extrude'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.extrude.Extrude'>>]}, 'ref': 'kittycad.models.extrude.Extrude:94248687142624', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Extrude', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'extrude', 'schema': {'expected': ['extrude'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionExtrude', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Extrude, required=True), 'type': FieldInfo(annotation=Literal['extrude'], required=False, default='extrude')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbe9b060,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8486e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Extrude",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b42da520,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "extrude",                                             },                                             expected_py: None,                                             name: "literal['extrude']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionExtrude",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionExtrude", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2da8180,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2dab0f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Extrude",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8486e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Extrude",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dab060,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2dab120,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b42da520,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "extrude": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b3f45440,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b42da520,                                                 ),                                             ],                                         },                                         expected_repr: "'extrude'",                                         name: "literal['extrude']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['extrude']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionExtrude",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbe9b060,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionExtrude",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.extrude.Extrude, type: Literal['extrude'] = 'extrude') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Extrude[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Extrude, required=True), 'type': FieldInfo(annotation=Literal['extrude'], required=False, default='extrude')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['extrude'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionExtrusionFaceInfo(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['extrusion_face_info']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionExtrusionFaceInfo'>, 'config': {'title': 'OptionExtrusionFaceInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionExtrusionFaceInfo'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionExtrusionFaceInfo:94248695220784', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo'>, 'config': {'title': 'ExtrusionFaceInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo'>>]}, 'ref': 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo:94248687165968', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'cap': {'metadata': {}, 'schema': {'cls': <enum 'ExtrusionFaceCapType'>, 'members': [ExtrusionFaceCapType.NONE, ExtrusionFaceCapType.TOP, ExtrusionFaceCapType.BOTTOM, ExtrusionFaceCapType.BOTH], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.extrusion_face_cap_type.ExtrusionFaceCapType:94248687162240', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'curve_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'face_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'ExtrusionFaceInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'extrusion_face_info', 'schema': {'expected': ['extrusion_face_info'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionExtrusionFaceInfo', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ExtrusionFaceInfo, required=True), 'type': FieldInfo(annotation=Literal['extrusion_face_info'], required=False, default='extrusion_face_info')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbffca30,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb84e210,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "cap": SerField {                                                     key_py: Py(                                                         0x00007f40b5aae8e0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x000055b7fb84d380,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "face_id": SerField {                                                     key_py: Py(                                                         0x00007f40b3e04870,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "curve_id": SerField {                                                     key_py: Py(                                                         0x00007f40b315fbb0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 3,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ExtrusionFaceInfo",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4202130,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "extrusion_face_info",                                             },                                             expected_py: None,                                             name: "literal['extrusion_face_info']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionExtrusionFaceInfo",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionExtrusionFaceInfo", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2cdd2f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2cdd1d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "cap",                                                 lookup_key: Simple {                                                     key: "cap",                                                     py_key: Py(                                                         0x00007f40b2cdd290,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "cap",                                                                 Py(                                                                     0x00007f40b2cdd1a0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b5aae8e0,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x000055b7fb84d380,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "none": 0,                                                                     "top": 1,                                                                     "both": 3,                                                                     "bottom": 2,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007f40b2cf9480,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007f40b3154410,                                                                 ),                                                                 Py(                                                                     0x00007f40b3154470,                                                                 ),                                                                 Py(                                                                     0x00007f40b31544d0,                                                                 ),                                                                 Py(                                                                     0x00007f40b3154530,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'none', 'top', 'bottom' or 'both'",                                                         strict: false,                                                         class_repr: "ExtrusionFaceCapType",                                                         name: "str-enum[ExtrusionFaceCapType]",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "curve_id",                                                 lookup_key: Simple {                                                     key: "curve_id",                                                     py_key: Py(                                                         0x00007f40b2cf98f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "curve_id",                                                                 Py(                                                                     0x00007f40b2cf8130,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b315fbb0,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "face_id",                                                 lookup_key: Simple {                                                     key: "face_id",                                                     py_key: Py(                                                         0x00007f40b2cdd2c0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "face_id",                                                                 Py(                                                                     0x00007f40b2cdd320,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3e04870,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ExtrusionFaceInfo",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb84e210,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ExtrusionFaceInfo",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2cdd260,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2cdd230,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4202130,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "extrusion_face_info": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cf9980,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4202130,                                                 ),                                             ],                                         },                                         expected_repr: "'extrusion_face_info'",                                         name: "literal['extrusion_face_info']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['extrusion_face_info']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionExtrusionFaceInfo",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbffca30,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionExtrusionFaceInfo",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.extrusion_face_info.ExtrusionFaceInfo, type: Literal['extrusion_face_info'] = 'extrusion_face_info') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ExtrusionFaceInfo[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ExtrusionFaceInfo, required=True), 'type': FieldInfo(annotation=Literal['extrusion_face_info'], required=False, default='extrusion_face_info')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['extrusion_face_info'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionFaceGetCenter(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.face_get_center.FaceGetCenter'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['face_get_center']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetCenter'>, 'config': {'title': 'OptionFaceGetCenter'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetCenter'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetCenter:94248694978256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.face_get_center.FaceGetCenter'>, 'config': {'title': 'FaceGetCenter'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.face_get_center.FaceGetCenter'>>]}, 'ref': 'kittycad.models.face_get_center.FaceGetCenter:94248687152624', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'pos': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'FaceGetCenter', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'face_get_center', 'schema': {'expected': ['face_get_center'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionFaceGetCenter', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetCenter, required=True), 'type': FieldInfo(annotation=Literal['face_get_center'], required=False, default='face_get_center')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfc16d0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb84adf0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "pos": SerField {                                                     key_py: Py(                                                         0x00007f40b7c210d8,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x000055b7fa90b760,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "x": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24420,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "y": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24450,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "z": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24480,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 3,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "Point3d",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "FaceGetCenter",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4202570,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "face_get_center",                                             },                                             expected_py: None,                                             name: "literal['face_get_center']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionFaceGetCenter",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionFaceGetCenter", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6ec70,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6f060,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "pos",                                                 lookup_key: Simple {                                                     key: "pos",                                                     py_key: Py(                                                         0x00007f40b2c6ecd0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "pos",                                                                 Py(                                                                     0x00007f40b2c6ed30,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c210d8,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "x",                                                                         lookup_key: Simple {                                                                             key: "x",                                                                             py_key: Py(                                                                                 0x00007f40b7c24420,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "x",                                                                                         Py(                                                                                             0x00007f40b7c24420,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24420,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "y",                                                                         lookup_key: Simple {                                                                             key: "y",                                                                             py_key: Py(                                                                                 0x00007f40b7c24450,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "y",                                                                                         Py(                                                                                             0x00007f40b7c24450,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24450,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "z",                                                                         lookup_key: Simple {                                                                             key: "z",                                                                             py_key: Py(                                                                                 0x00007f40b7c24480,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "z",                                                                                         Py(                                                                                             0x00007f40b7c24480,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24480,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "Point3d",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x000055b7fa90b760,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                         name: "Point3d",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "FaceGetCenter",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb84adf0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "FaceGetCenter",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6ef40,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6eca0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4202570,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "face_get_center": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cd50c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4202570,                                                 ),                                             ],                                         },                                         expected_repr: "'face_get_center'",                                         name: "literal['face_get_center']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['face_get_center']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionFaceGetCenter",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfc16d0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionFaceGetCenter",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.face_get_center.FaceGetCenter, type: Literal['face_get_center'] = 'face_get_center') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: FaceGetCenter[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetCenter, required=True), 'type': FieldInfo(annotation=Literal['face_get_center'], required=False, default='face_get_center')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['face_get_center'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionFaceGetGradient(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.face_get_gradient.FaceGetGradient'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['face_get_gradient']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetGradient'>, 'config': {'title': 'OptionFaceGetGradient'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetGradient'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetGradient:94248694994176', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.face_get_gradient.FaceGetGradient'>, 'config': {'title': 'FaceGetGradient'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.face_get_gradient.FaceGetGradient'>>]}, 'ref': 'kittycad.models.face_get_gradient.FaceGetGradient:94248687173328', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'df_du': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'df_dv': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'normal': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'FaceGetGradient', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'face_get_gradient', 'schema': {'expected': ['face_get_gradient'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionFaceGetGradient', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetGradient, required=True), 'type': FieldInfo(annotation=Literal['face_get_gradient'], required=False, default='face_get_gradient')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfc5500,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b4200830,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "face_get_gradient",                                             },                                             expected_py: None,                                             name: "literal['face_get_gradient']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb84fed0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "normal": SerField {                                                     key_py: Py(                                                         0x00007f40b649f3c0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "df_dv": SerField {                                                     key_py: Py(                                                         0x00007f40b352cf90,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "df_du": SerField {                                                     key_py: Py(                                                         0x00007f40b352ce40,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 3,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "FaceGetGradient",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionFaceGetGradient",     }, ), definitions=[Model(ModelSerializer { class: Py(0x55b7fa90b760), serializer: Fields(GeneralFieldsSerializer { fields: {"z": SerField { key_py: Py(0x7f40b7c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7f40b7c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7f40b7c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionFaceGetGradient", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6ff60,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6ff90,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "df_du",                                                 lookup_key: Simple {                                                     key: "df_du",                                                     py_key: Py(                                                         0x00007f40b2c6fe40,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "df_du",                                                                 Py(                                                                     0x00007f40b2c6fe70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b352ce40,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "df_dv",                                                 lookup_key: Simple {                                                     key: "df_dv",                                                     py_key: Py(                                                         0x00007f40b2c6fea0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "df_dv",                                                                 Py(                                                                     0x00007f40b2c6fed0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b352cf90,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "normal",                                                 lookup_key: Simple {                                                     key: "normal",                                                     py_key: Py(                                                         0x00007f40b2c6ff00,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "normal",                                                                 Py(                                                                     0x00007f40b2c6ff30,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b649f3c0,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "FaceGetGradient",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb84fed0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "FaceGetGradient",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6ffc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2cdc030,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b4200830,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "face_get_gradient": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cd6a40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b4200830,                                                 ),                                             ],                                         },                                         expected_repr: "'face_get_gradient'",                                         name: "literal['face_get_gradient']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['face_get_gradient']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionFaceGetGradient",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfc5500,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionFaceGetGradient",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7f40b7c24420), path: LookupPath([S("x", Py(0x7f40b7c24420))]) }, name_py: Py(0x7f40b7c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7f40b7c24450), path: LookupPath([S("y", Py(0x7f40b7c24450))]) }, name_py: Py(0x7f40b7c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7f40b7c24480), path: LookupPath([S("z", Py(0x7f40b7c24480))]) }, name_py: Py(0x7f40b7c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b7fa90b760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7f40b5be63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.face_get_gradient.FaceGetGradient, type: Literal['face_get_gradient'] = 'face_get_gradient') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: FaceGetGradient[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetGradient, required=True), 'type': FieldInfo(annotation=Literal['face_get_gradient'], required=False, default='face_get_gradient')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['face_get_gradient'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionFaceGetPosition(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.face_get_position.FaceGetPosition'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['face_get_position']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetPosition'>, 'config': {'title': 'OptionFaceGetPosition'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetPosition'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetPosition:94248694962336', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.face_get_position.FaceGetPosition'>, 'config': {'title': 'FaceGetPosition'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.face_get_position.FaceGetPosition'>>]}, 'ref': 'kittycad.models.face_get_position.FaceGetPosition:94248687186048', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'pos': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'FaceGetPosition', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'face_get_position', 'schema': {'expected': ['face_get_position'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionFaceGetPosition', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetPosition, required=True), 'type': FieldInfo(annotation=Literal['face_get_position'], required=False, default='face_get_position')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfbd8a0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb853080,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "pos": SerField {                                                     key_py: Py(                                                         0x00007f40b7c210d8,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x000055b7fa90b760,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "x": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24420,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "y": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24450,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "z": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c24480,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 3,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "Point3d",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "FaceGetPosition",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43ded70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "face_get_position",                                             },                                             expected_py: None,                                             name: "literal['face_get_position']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionFaceGetPosition",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionFaceGetPosition", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6df80,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6e010,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "pos",                                                 lookup_key: Simple {                                                     key: "pos",                                                     py_key: Py(                                                         0x00007f40b2c6dec0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "pos",                                                                 Py(                                                                     0x00007f40b2c6e0d0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c210d8,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "x",                                                                         lookup_key: Simple {                                                                             key: "x",                                                                             py_key: Py(                                                                                 0x00007f40b7c24420,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "x",                                                                                         Py(                                                                                             0x00007f40b7c24420,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24420,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "y",                                                                         lookup_key: Simple {                                                                             key: "y",                                                                             py_key: Py(                                                                                 0x00007f40b7c24450,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "y",                                                                                         Py(                                                                                             0x00007f40b7c24450,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24450,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "z",                                                                         lookup_key: Simple {                                                                             key: "z",                                                                             py_key: Py(                                                                                 0x00007f40b7c24480,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "z",                                                                                         Py(                                                                                             0x00007f40b7c24480,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c24480,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "Point3d",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x000055b7fa90b760,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                         name: "Point3d",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "FaceGetPosition",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb853080,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "FaceGetPosition",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6dfe0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6dbf0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43ded70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "face_get_position": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ccfb00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43ded70,                                                 ),                                             ],                                         },                                         expected_repr: "'face_get_position'",                                         name: "literal['face_get_position']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['face_get_position']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionFaceGetPosition",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfbd8a0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionFaceGetPosition",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.face_get_position.FaceGetPosition, type: Literal['face_get_position'] = 'face_get_position') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: FaceGetPosition[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetPosition, required=True), 'type': FieldInfo(annotation=Literal['face_get_position'], required=False, default='face_get_position')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['face_get_position'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionFaceIsPlanar(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.face_is_planar.FaceIsPlanar'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['face_is_planar']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceIsPlanar'>, 'config': {'title': 'OptionFaceIsPlanar'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceIsPlanar'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionFaceIsPlanar:94248694933664', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.face_is_planar.FaceIsPlanar'>, 'config': {'title': 'FaceIsPlanar'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.face_is_planar.FaceIsPlanar'>>]}, 'ref': 'kittycad.models.face_is_planar.FaceIsPlanar:94248686793152', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'origin': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'x_axis': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'y_axis': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'z_axis': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'FaceIsPlanar', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'face_is_planar', 'schema': {'expected': ['face_is_planar'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionFaceIsPlanar', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceIsPlanar, required=True), 'type': FieldInfo(annotation=Literal['face_is_planar'], required=False, default='face_is_planar')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfb68a0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43ded30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "face_is_planar",                                             },                                             expected_py: None,                                             name: "literal['face_is_planar']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb7f31c0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "origin": SerField {                                                     key_py: Py(                                                         0x00007f40b7c20d78,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Recursive(                                                                             DefinitionRefSerializer {                                                                                 definition: "...",                                                                                 retry_with_lax_check: true,                                                                             },                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "y_axis": SerField {                                                     key_py: Py(                                                         0x00007f40b33b4060,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Recursive(                                                                             DefinitionRefSerializer {                                                                                 definition: "...",                                                                                 retry_with_lax_check: true,                                                                             },                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "x_axis": SerField {                                                     key_py: Py(                                                         0x00007f40b352ff30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Recursive(                                                                             DefinitionRefSerializer {                                                                                 definition: "...",                                                                                 retry_with_lax_check: true,                                                                             },                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "z_axis": SerField {                                                     key_py: Py(                                                         0x00007f40b33b4150,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Recursive(                                                                             DefinitionRefSerializer {                                                                                 definition: "...",                                                                                 retry_with_lax_check: true,                                                                             },                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 4,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "FaceIsPlanar",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionFaceIsPlanar",     }, ), definitions=[Model(ModelSerializer { class: Py(0x55b7fa90b760), serializer: Fields(GeneralFieldsSerializer { fields: {"z": SerField { key_py: Py(0x7f40b7c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7f40b7c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7f40b7c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionFaceIsPlanar", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6f150,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6f0f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "origin",                                                 lookup_key: Simple {                                                     key: "origin",                                                     py_key: Py(                                                         0x00007f40b2c6f390,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "origin",                                                                 Py(                                                                     0x00007f40b2c6f360,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c20d78,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: DefinitionRef(                                                                     DefinitionRefValidator {                                                                         definition: "Point3d",                                                                     },                                                                 ),                                                                 name: "nullable[Point3d]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[Point3d]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "x_axis",                                                 lookup_key: Simple {                                                     key: "x_axis",                                                     py_key: Py(                                                         0x00007f40b2c6f420,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "x_axis",                                                                 Py(                                                                     0x00007f40b2c6f3c0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b352ff30,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: DefinitionRef(                                                                     DefinitionRefValidator {                                                                         definition: "Point3d",                                                                     },                                                                 ),                                                                 name: "nullable[Point3d]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[Point3d]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "y_axis",                                                 lookup_key: Simple {                                                     key: "y_axis",                                                     py_key: Py(                                                         0x00007f40b2c6f2d0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "y_axis",                                                                 Py(                                                                     0x00007f40b2c6f1b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b33b4060,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: DefinitionRef(                                                                     DefinitionRefValidator {                                                                         definition: "Point3d",                                                                     },                                                                 ),                                                                 name: "nullable[Point3d]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[Point3d]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "z_axis",                                                 lookup_key: Simple {                                                     key: "z_axis",                                                     py_key: Py(                                                         0x00007f40b2c6f120,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "z_axis",                                                                 Py(                                                                     0x00007f40b2c6f180,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b33b4150,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: DefinitionRef(                                                                     DefinitionRefValidator {                                                                         definition: "Point3d",                                                                     },                                                                 ),                                                                 name: "nullable[Point3d]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[Point3d]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "FaceIsPlanar",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb7f31c0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "FaceIsPlanar",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6f0c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6e7c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43ded30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "face_is_planar": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cce5c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43ded30,                                                 ),                                             ],                                         },                                         expected_repr: "'face_is_planar'",                                         name: "literal['face_is_planar']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['face_is_planar']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionFaceIsPlanar",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfb68a0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionFaceIsPlanar",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7f40b7c24420), path: LookupPath([S("x", Py(0x7f40b7c24420))]) }, name_py: Py(0x7f40b7c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7f40b7c24450), path: LookupPath([S("y", Py(0x7f40b7c24450))]) }, name_py: Py(0x7f40b7c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7f40b7c24480), path: LookupPath([S("z", Py(0x7f40b7c24480))]) }, name_py: Py(0x7f40b7c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b7fa90b760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7f40b5be63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.face_is_planar.FaceIsPlanar, type: Literal['face_is_planar'] = 'face_is_planar') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: FaceIsPlanar[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceIsPlanar, required=True), 'type': FieldInfo(annotation=Literal['face_is_planar'], required=False, default='face_is_planar')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['face_is_planar'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionGetEntityType(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.get_entity_type.GetEntityType'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['get_entity_type']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionGetEntityType'>, 'config': {'title': 'OptionGetEntityType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionGetEntityType'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionGetEntityType:94248694753696', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.get_entity_type.GetEntityType'>, 'config': {'title': 'GetEntityType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.get_entity_type.GetEntityType'>>]}, 'ref': 'kittycad.models.get_entity_type.GetEntityType:94248687601152', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_type': {'metadata': {}, 'schema': {'cls': <enum 'EntityType'>, 'members': [EntityType.ENTITY, EntityType.OBJECT, EntityType.PATH, EntityType.CURVE, EntityType.SOLID2D, EntityType.SOLID3D, EntityType.EDGE, EntityType.FACE, EntityType.PLANE, EntityType.VERTEX], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.entity_type.EntityType:94248686926192', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}}, 'model_name': 'GetEntityType', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'get_entity_type', 'schema': {'expected': ['get_entity_type'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionGetEntityType', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetEntityType, required=True), 'type': FieldInfo(annotation=Literal['get_entity_type'], required=False, default='get_entity_type')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf8a9a0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8b8600,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_type": SerField {                                                     key_py: Py(                                                         0x00007f40b4200270,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x000055b7fb813970,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "GetEntityType",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43fe0f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "get_entity_type",                                             },                                             expected_py: None,                                             name: "literal['get_entity_type']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionGetEntityType",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionGetEntityType", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6dc80,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6dd10,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_type",                                                 lookup_key: Simple {                                                     key: "entity_type",                                                     py_key: Py(                                                         0x00007f40b2cab3b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_type",                                                                 Py(                                                                     0x00007f40b2cab370,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b4200270,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x000055b7fb813970,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "solid2d": 4,                                                                     "path": 2,                                                                     "curve": 3,                                                                     "solid3d": 5,                                                                     "plane": 8,                                                                     "entity": 0,                                                                     "object": 1,                                                                     "edge": 6,                                                                     "vertex": 9,                                                                     "face": 7,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007f40b2cab300,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007f40b3277110,                                                                 ),                                                                 Py(                                                                     0x00007f40b3277170,                                                                 ),                                                                 Py(                                                                     0x00007f40b32771d0,                                                                 ),                                                                 Py(                                                                     0x00007f40b3277230,                                                                 ),                                                                 Py(                                                                     0x00007f40b3277290,                                                                 ),                                                                 Py(                                                                     0x00007f40b32772f0,                                                                 ),                                                                 Py(                                                                     0x00007f40b3277350,                                                                 ),                                                                 Py(                                                                     0x00007f40b32773b0,                                                                 ),                                                                 Py(                                                                     0x00007f40b3277410,                                                                 ),                                                                 Py(                                                                     0x00007f40b3277470,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'entity', 'object', 'path', 'curve', 'solid2d', 'solid3d', 'edge', 'face', 'plane' or 'vertex'",                                                         strict: false,                                                         class_repr: "EntityType",                                                         name: "str-enum[EntityType]",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "GetEntityType",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8b8600,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "GetEntityType",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6dce0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6dc50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43fe0f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "get_entity_type": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cab400,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43fe0f0,                                                 ),                                             ],                                         },                                         expected_repr: "'get_entity_type'",                                         name: "literal['get_entity_type']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['get_entity_type']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionGetEntityType",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf8a9a0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionGetEntityType",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.get_entity_type.GetEntityType, type: Literal['get_entity_type'] = 'get_entity_type') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: GetEntityType[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetEntityType, required=True), 'type': FieldInfo(annotation=Literal['get_entity_type'], required=False, default='get_entity_type')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['get_entity_type'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionGetNumObjects(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.get_num_objects.GetNumObjects'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['get_num_objects']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionGetNumObjects'>, 'config': {'title': 'OptionGetNumObjects'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionGetNumObjects'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionGetNumObjects:94248694632512', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.get_num_objects.GetNumObjects'>, 'config': {'title': 'GetNumObjects'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.get_num_objects.GetNumObjects'>>]}, 'ref': 'kittycad.models.get_num_objects.GetNumObjects:94248687614736', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'num_objects': {'metadata': {}, 'schema': {'type': 'int'}, 'type': 'model-field'}}, 'model_name': 'GetNumObjects', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'get_num_objects', 'schema': {'expected': ['get_num_objects'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionGetNumObjects', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetNumObjects, required=True), 'type': FieldInfo(annotation=Literal['get_num_objects'], required=False, default='get_num_objects')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf6d040,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43fe830,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "get_num_objects",                                             },                                             expected_py: None,                                             name: "literal['get_num_objects']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8bbb10,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "num_objects": SerField {                                                     key_py: Py(                                                         0x00007f40b4749e70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Int(                                                             IntSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "GetNumObjects",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionGetNumObjects",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionGetNumObjects", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1ed60,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1f390,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "num_objects",                                                 lookup_key: Simple {                                                     key: "num_objects",                                                     py_key: Py(                                                         0x00007f40b2dcbfb0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "num_objects",                                                                 Py(                                                                     0x00007f40b2e34db0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b4749e70,                                                 ),                                                 validator: Int(                                                     IntValidator {                                                         strict: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "GetNumObjects",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8bbb10,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "GetNumObjects",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1f660,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f870,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43fe830,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "get_num_objects": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c816c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43fe830,                                                 ),                                             ],                                         },                                         expected_repr: "'get_num_objects'",                                         name: "literal['get_num_objects']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['get_num_objects']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionGetNumObjects",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf6d040,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionGetNumObjects",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.get_num_objects.GetNumObjects, type: Literal['get_num_objects'] = 'get_num_objects') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: GetNumObjects[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetNumObjects, required=True), 'type': FieldInfo(annotation=Literal['get_num_objects'], required=False, default='get_num_objects')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['get_num_objects'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionGetSketchModePlane(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.get_sketch_mode_plane.GetSketchModePlane'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['get_sketch_mode_plane']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionGetSketchModePlane'>, 'config': {'title': 'OptionGetSketchModePlane'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionGetSketchModePlane'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionGetSketchModePlane:94248695126608', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.get_sketch_mode_plane.GetSketchModePlane'>, 'config': {'title': 'GetSketchModePlane'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.get_sketch_mode_plane.GetSketchModePlane'>>]}, 'ref': 'kittycad.models.get_sketch_mode_plane.GetSketchModePlane:94248687619232', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'origin': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'x_axis': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'y_axis': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'z_axis': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'GetSketchModePlane', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'get_sketch_mode_plane', 'schema': {'expected': ['get_sketch_mode_plane'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionGetSketchModePlane', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetSketchModePlane, required=True), 'type': FieldInfo(annotation=Literal['get_sketch_mode_plane'], required=False, default='get_sketch_mode_plane')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfe5a50,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8bcca0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "z_axis": SerField {                                                     key_py: Py(                                                         0x00007f40b33b4150,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "y_axis": SerField {                                                     key_py: Py(                                                         0x00007f40b33b4060,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "origin": SerField {                                                     key_py: Py(                                                         0x00007f40b7c20d78,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "x_axis": SerField {                                                     key_py: Py(                                                         0x00007f40b352ff30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 4,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "GetSketchModePlane",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43fed30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "get_sketch_mode_plane",                                             },                                             expected_py: None,                                             name: "literal['get_sketch_mode_plane']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionGetSketchModePlane",     }, ), definitions=[Model(ModelSerializer { class: Py(0x55b7fa90b760), serializer: Fields(GeneralFieldsSerializer { fields: {"y": SerField { key_py: Py(0x7f40b7c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7f40b7c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7f40b7c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionGetSketchModePlane", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1f090,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1ff60,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "origin",                                                 lookup_key: Simple {                                                     key: "origin",                                                     py_key: Py(                                                         0x00007f40b2c6ed00,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "origin",                                                                 Py(                                                                     0x00007f40b2c6fbd0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c20d78,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "x_axis",                                                 lookup_key: Simple {                                                     key: "x_axis",                                                     py_key: Py(                                                         0x00007f40b2c6fd20,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "x_axis",                                                                 Py(                                                                     0x00007f40b2c6fdb0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b352ff30,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "y_axis",                                                 lookup_key: Simple {                                                     key: "y_axis",                                                     py_key: Py(                                                         0x00007f40b2c6fde0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "y_axis",                                                                 Py(                                                                     0x00007f40b2e1f480,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b33b4060,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "z_axis",                                                 lookup_key: Simple {                                                     key: "z_axis",                                                     py_key: Py(                                                         0x00007f40b2e1fed0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "z_axis",                                                                 Py(                                                                     0x00007f40b2e1f3c0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b33b4150,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "GetSketchModePlane",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8bcca0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "GetSketchModePlane",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1f510,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1ed90,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43fed30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "get_sketch_mode_plane": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cf1540,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43fed30,                                                 ),                                             ],                                         },                                         expected_repr: "'get_sketch_mode_plane'",                                         name: "literal['get_sketch_mode_plane']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['get_sketch_mode_plane']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionGetSketchModePlane",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfe5a50,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionGetSketchModePlane",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7f40b7c24420), path: LookupPath([S("x", Py(0x7f40b7c24420))]) }, name_py: Py(0x7f40b7c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7f40b7c24450), path: LookupPath([S("y", Py(0x7f40b7c24450))]) }, name_py: Py(0x7f40b7c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7f40b7c24480), path: LookupPath([S("z", Py(0x7f40b7c24480))]) }, name_py: Py(0x7f40b7c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b7fa90b760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7f40b5be63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.get_sketch_mode_plane.GetSketchModePlane, type: Literal['get_sketch_mode_plane'] = 'get_sketch_mode_plane') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: GetSketchModePlane[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetSketchModePlane, required=True), 'type': FieldInfo(annotation=Literal['get_sketch_mode_plane'], required=False, default='get_sketch_mode_plane')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['get_sketch_mode_plane'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragEnd(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.handle_mouse_drag_end.HandleMouseDragEnd'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['handle_mouse_drag_end']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragEnd'>, 'config': {'title': 'OptionHandleMouseDragEnd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragEnd'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragEnd:94248694174064', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.handle_mouse_drag_end.HandleMouseDragEnd'>, 'config': {'title': 'HandleMouseDragEnd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.handle_mouse_drag_end.HandleMouseDragEnd'>>]}, 'ref': 'kittycad.models.handle_mouse_drag_end.HandleMouseDragEnd:94248687635568', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'HandleMouseDragEnd', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'handle_mouse_drag_end', 'schema': {'expected': ['handle_mouse_drag_end'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionHandleMouseDragEnd', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragEnd, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_end'], required=False, default='handle_mouse_drag_end')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbefd170,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43fe2f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "handle_mouse_drag_end",                                             },                                             expected_py: None,                                             name: "literal['handle_mouse_drag_end']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8c0c70,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "HandleMouseDragEnd",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionHandleMouseDragEnd",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionHandleMouseDragEnd", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1e400,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1e4f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "HandleMouseDragEnd",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8c0c70,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "HandleMouseDragEnd",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1e2e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1e4c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43fe2f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "handle_mouse_drag_end": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c57140,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43fe2f0,                                                 ),                                             ],                                         },                                         expected_repr: "'handle_mouse_drag_end'",                                         name: "literal['handle_mouse_drag_end']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['handle_mouse_drag_end']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionHandleMouseDragEnd",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbefd170,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionHandleMouseDragEnd",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.handle_mouse_drag_end.HandleMouseDragEnd, type: Literal['handle_mouse_drag_end'] = 'handle_mouse_drag_end') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: HandleMouseDragEnd[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragEnd, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_end'], required=False, default='handle_mouse_drag_end')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['handle_mouse_drag_end'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragMove(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.handle_mouse_drag_move.HandleMouseDragMove'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['handle_mouse_drag_move']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragMove'>, 'config': {'title': 'OptionHandleMouseDragMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragMove'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragMove:94248694164640', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.handle_mouse_drag_move.HandleMouseDragMove'>, 'config': {'title': 'HandleMouseDragMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.handle_mouse_drag_move.HandleMouseDragMove'>>]}, 'ref': 'kittycad.models.handle_mouse_drag_move.HandleMouseDragMove:94248687639728', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'HandleMouseDragMove', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'handle_mouse_drag_move', 'schema': {'expected': ['handle_mouse_drag_move'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionHandleMouseDragMove', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragMove, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_move'], required=False, default='handle_mouse_drag_move')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbefaca0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43fe1f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "handle_mouse_drag_move",                                             },                                             expected_py: None,                                             name: "literal['handle_mouse_drag_move']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8c1cb0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "HandleMouseDragMove",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionHandleMouseDragMove",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionHandleMouseDragMove", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1ec10,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1ebe0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "HandleMouseDragMove",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8c1cb0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "HandleMouseDragMove",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1ea30,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1ea60,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43fe1f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "handle_mouse_drag_move": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c56200,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43fe1f0,                                                 ),                                             ],                                         },                                         expected_repr: "'handle_mouse_drag_move'",                                         name: "literal['handle_mouse_drag_move']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['handle_mouse_drag_move']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionHandleMouseDragMove",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbefaca0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionHandleMouseDragMove",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.handle_mouse_drag_move.HandleMouseDragMove, type: Literal['handle_mouse_drag_move'] = 'handle_mouse_drag_move') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: HandleMouseDragMove[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragMove, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_move'], required=False, default='handle_mouse_drag_move')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['handle_mouse_drag_move'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragStart(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.handle_mouse_drag_start.HandleMouseDragStart'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['handle_mouse_drag_start']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragStart'>, 'config': {'title': 'OptionHandleMouseDragStart'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragStart'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragStart:94248694155232', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.handle_mouse_drag_start.HandleMouseDragStart'>, 'config': {'title': 'HandleMouseDragStart'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.handle_mouse_drag_start.HandleMouseDragStart'>>]}, 'ref': 'kittycad.models.handle_mouse_drag_start.HandleMouseDragStart:94248687643568', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'HandleMouseDragStart', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'handle_mouse_drag_start', 'schema': {'expected': ['handle_mouse_drag_start'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionHandleMouseDragStart', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragStart, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_start'], required=False, default='handle_mouse_drag_start')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbef87e0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8c2bb0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "HandleMouseDragStart",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43fdc30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "handle_mouse_drag_start",                                             },                                             expected_py: None,                                             name: "literal['handle_mouse_drag_start']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionHandleMouseDragStart",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionHandleMouseDragStart", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1efa0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1f060,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "HandleMouseDragStart",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8c2bb0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "HandleMouseDragStart",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1ef40,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f030,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43fdc30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "handle_mouse_drag_start": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c55380,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43fdc30,                                                 ),                                             ],                                         },                                         expected_repr: "'handle_mouse_drag_start'",                                         name: "literal['handle_mouse_drag_start']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['handle_mouse_drag_start']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionHandleMouseDragStart",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbef87e0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionHandleMouseDragStart",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.handle_mouse_drag_start.HandleMouseDragStart, type: Literal['handle_mouse_drag_start'] = 'handle_mouse_drag_start') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: HandleMouseDragStart[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragStart, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_start'], required=False, default='handle_mouse_drag_start')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['handle_mouse_drag_start'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntities(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.highlight_set_entities.HighlightSetEntities'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['highlight_set_entities']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntities'>, 'config': {'title': 'OptionHighlightSetEntities'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntities'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntities:94248693915296', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.highlight_set_entities.HighlightSetEntities'>, 'config': {'title': 'HighlightSetEntities'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.highlight_set_entities.HighlightSetEntities'>>]}, 'ref': 'kittycad.models.highlight_set_entities.HighlightSetEntities:94248687647408', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'HighlightSetEntities', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'highlight_set_entities', 'schema': {'expected': ['highlight_set_entities'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionHighlightSetEntities', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HighlightSetEntities, required=True), 'type': FieldInfo(annotation=Literal['highlight_set_entities'], required=False, default='highlight_set_entities')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbebdea0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8c3ab0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "HighlightSetEntities",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43fdb30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "highlight_set_entities",                                             },                                             expected_py: None,                                             name: "literal['highlight_set_entities']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionHighlightSetEntities",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionHighlightSetEntities", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2daa040,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2daa0d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "HighlightSetEntities",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8c3ab0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "HighlightSetEntities",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2da9fe0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da9890,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43fdb30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "highlight_set_entities": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2f252c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43fdb30,                                                 ),                                             ],                                         },                                         expected_repr: "'highlight_set_entities'",                                         name: "literal['highlight_set_entities']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['highlight_set_entities']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionHighlightSetEntities",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbebdea0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionHighlightSetEntities",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.highlight_set_entities.HighlightSetEntities, type: Literal['highlight_set_entities'] = 'highlight_set_entities') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: HighlightSetEntities[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HighlightSetEntities, required=True), 'type': FieldInfo(annotation=Literal['highlight_set_entities'], required=False, default='highlight_set_entities')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['highlight_set_entities'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntity(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.highlight_set_entity.HighlightSetEntity'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['highlight_set_entity']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntity'>, 'config': {'title': 'OptionHighlightSetEntity'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntity'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntity:94248694310656', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.highlight_set_entity.HighlightSetEntity'>, 'config': {'title': 'HighlightSetEntity'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.highlight_set_entity.HighlightSetEntity'>>]}, 'ref': 'kittycad.models.highlight_set_entity.HighlightSetEntity:94248687650864', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'sequence': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'int'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'HighlightSetEntity', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'highlight_set_entity', 'schema': {'expected': ['highlight_set_entity'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionHighlightSetEntity', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HighlightSetEntity, required=True), 'type': FieldInfo(annotation=Literal['highlight_set_entity'], required=False, default='highlight_set_entity')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf1e700,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8c4830,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_id": SerField {                                                     key_py: Py(                                                         0x00007f40b3245eb0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "sequence": SerField {                                                     key_py: Py(                                                         0x00007f40b7c21a70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Int(                                                                             IntSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "HighlightSetEntity",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43fd9b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "highlight_set_entity",                                             },                                             expected_py: None,                                             name: "literal['highlight_set_entity']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionHighlightSetEntity",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionHighlightSetEntity", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1f750,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1f900,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_id",                                                 lookup_key: Simple {                                                     key: "entity_id",                                                     py_key: Py(                                                         0x00007f40b2c63d30,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_id",                                                                 Py(                                                                     0x00007f40b2c63cf0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3245eb0,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "sequence",                                                 lookup_key: Simple {                                                     key: "sequence",                                                     py_key: Py(                                                         0x00007f40b2c63db0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "sequence",                                                                 Py(                                                                     0x00007f40b2c63d70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c21a70,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Int(                                                                     IntValidator {                                                                         strict: false,                                                                     },                                                                 ),                                                                 name: "nullable[int]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[int]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "HighlightSetEntity",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8c4830,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "HighlightSetEntity",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1f8d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f8a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43fd9b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "highlight_set_entity": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c63e40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43fd9b0,                                                 ),                                             ],                                         },                                         expected_repr: "'highlight_set_entity'",                                         name: "literal['highlight_set_entity']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['highlight_set_entity']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionHighlightSetEntity",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf1e700,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionHighlightSetEntity",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.highlight_set_entity.HighlightSetEntity, type: Literal['highlight_set_entity'] = 'highlight_set_entity') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: HighlightSetEntity[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HighlightSetEntity, required=True), 'type': FieldInfo(annotation=Literal['highlight_set_entity'], required=False, default='highlight_set_entity')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['highlight_set_entity'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionImportFiles(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.import_files.ImportFiles'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['import_files']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionImportFiles'>, 'config': {'title': 'OptionImportFiles'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionImportFiles'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionImportFiles:94248695032448', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.import_files.ImportFiles'>, 'config': {'title': 'ImportFiles'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.import_files.ImportFiles'>>]}, 'ref': 'kittycad.models.import_files.ImportFiles:94248687726672', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'object_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'ImportFiles', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'import_files', 'schema': {'expected': ['import_files'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionImportFiles', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ImportFiles, required=True), 'type': FieldInfo(annotation=Literal['import_files'], required=False, default='import_files')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfcea80,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8d7050,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "object_id": SerField {                                                     key_py: Py(                                                         0x00007f40b61a31b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ImportFiles",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43fd530,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "import_files",                                             },                                             expected_py: None,                                             name: "literal['import_files']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionImportFiles",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionImportFiles", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6d920,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6d9b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "object_id",                                                 lookup_key: Simple {                                                     key: "object_id",                                                     py_key: Py(                                                         0x00007f40b2cd7230,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "object_id",                                                                 Py(                                                                     0x00007f40b2cd6fb0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b61a31b0,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ImportFiles",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8d7050,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ImportFiles",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6e040,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6e130,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43fd530,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "import_files": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cc0980,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43fd530,                                                 ),                                             ],                                         },                                         expected_repr: "'import_files'",                                         name: "literal['import_files']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['import_files']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionImportFiles",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfcea80,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionImportFiles",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.import_files.ImportFiles, type: Literal['import_files'] = 'import_files') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ImportFiles[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ImportFiles, required=True), 'type': FieldInfo(annotation=Literal['import_files'], required=False, default='import_files')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['import_files'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionImportedGeometry(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.imported_geometry.ImportedGeometry'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['imported_geometry']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionImportedGeometry'>, 'config': {'title': 'OptionImportedGeometry'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionImportedGeometry'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionImportedGeometry:94248695043696', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.imported_geometry.ImportedGeometry'>, 'config': {'title': 'ImportedGeometry'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.imported_geometry.ImportedGeometry'>>]}, 'ref': 'kittycad.models.imported_geometry.ImportedGeometry:94248687733040', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}, 'value': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'ImportedGeometry', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'imported_geometry', 'schema': {'expected': ['imported_geometry'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionImportedGeometry', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ImportedGeometry, required=True), 'type': FieldInfo(annotation=Literal['imported_geometry'], required=False, default='imported_geometry')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfd1670,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb8d8930,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "id": SerField {                                                     key_py: Py(                                                         0x00007f40b7c1f3d0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "value": SerField {                                                     key_py: Py(                                                         0x00007f40b7c22a48,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ImportedGeometry",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b43fd470,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "imported_geometry",                                             },                                             expected_py: None,                                             name: "literal['imported_geometry']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionImportedGeometry",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionImportedGeometry", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6f660,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6f7b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "id",                                                 lookup_key: Simple {                                                     key: "id",                                                     py_key: Py(                                                         0x00007f40b2c6f750,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "id",                                                                 Py(                                                                     0x00007f40b2c6f720,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c1f3d0,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "value",                                                 lookup_key: Simple {                                                     key: "value",                                                     py_key: Py(                                                         0x00007f40b2c6f540,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "value",                                                                 Py(                                                                     0x00007f40b2c6f6f0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c22a48,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ImportedGeometry",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb8d8930,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ImportedGeometry",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6f7e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6fb40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b43fd470,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "imported_geometry": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cd7d80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b43fd470,                                                 ),                                             ],                                         },                                         expected_repr: "'imported_geometry'",                                         name: "literal['imported_geometry']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['imported_geometry']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionImportedGeometry",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfd1670,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionImportedGeometry",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.imported_geometry.ImportedGeometry, type: Literal['imported_geometry'] = 'imported_geometry') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ImportedGeometry[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ImportedGeometry, required=True), 'type': FieldInfo(annotation=Literal['imported_geometry'], required=False, default='imported_geometry')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['imported_geometry'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionLoft(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.loft.Loft'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['loft']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionLoft'>, 'config': {'title': 'OptionLoft'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionLoft'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionLoft:94248694385264', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.loft.Loft'>, 'config': {'title': 'Loft'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.loft.Loft'>>]}, 'ref': 'kittycad.models.loft.Loft:94248688004064', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'solid_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'Loft', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'loft', 'schema': {'expected': ['loft'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionLoft', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Loft, required=True), 'type': FieldInfo(annotation=Literal['loft'], required=False, default='loft')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf30a70,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b42dd9b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "loft",                                             },                                             expected_py: None,                                             name: "literal['loft']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb91abe0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "solid_id": SerField {                                                     key_py: Py(                                                         0x00007f40b3214fb0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Loft",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionLoft",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionLoft", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1edc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1f0c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "solid_id",                                                 lookup_key: Simple {                                                     key: "solid_id",                                                     py_key: Py(                                                         0x00007f40b2c76970,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "solid_id",                                                                 Py(                                                                     0x00007f40b2c77570,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3214fb0,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Loft",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb91abe0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Loft",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1e190,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f840,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b42dd9b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "loft": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c62d80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b42dd9b0,                                                 ),                                             ],                                         },                                         expected_repr: "'loft'",                                         name: "literal['loft']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['loft']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionLoft",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf30a70,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionLoft",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.loft.Loft, type: Literal['loft'] = 'loft') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Loft[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Loft, required=True), 'type': FieldInfo(annotation=Literal['loft'], required=False, default='loft')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['loft'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMakeAxesGizmo(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.make_axes_gizmo.MakeAxesGizmo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['make_axes_gizmo']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMakeAxesGizmo'>, 'config': {'title': 'OptionMakeAxesGizmo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMakeAxesGizmo'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMakeAxesGizmo:94248694145936', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.make_axes_gizmo.MakeAxesGizmo'>, 'config': {'title': 'MakeAxesGizmo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.make_axes_gizmo.MakeAxesGizmo'>>]}, 'ref': 'kittycad.models.make_axes_gizmo.MakeAxesGizmo:94248688010288', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'MakeAxesGizmo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'make_axes_gizmo', 'schema': {'expected': ['make_axes_gizmo'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMakeAxesGizmo', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakeAxesGizmo, required=True), 'type': FieldInfo(annotation=Literal['make_axes_gizmo'], required=False, default='make_axes_gizmo')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbef6390,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb91c430,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MakeAxesGizmo",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ff7370,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "make_axes_gizmo",                                             },                                             expected_py: None,                                             name: "literal['make_axes_gizmo']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMakeAxesGizmo",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMakeAxesGizmo", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2dab990,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2dabbd0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "MakeAxesGizmo",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb91c430,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "MakeAxesGizmo",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dabc30,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da8060,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ff7370,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "make_axes_gizmo": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dc0b80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ff7370,                                                 ),                                             ],                                         },                                         expected_repr: "'make_axes_gizmo'",                                         name: "literal['make_axes_gizmo']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['make_axes_gizmo']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMakeAxesGizmo",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbef6390,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionMakeAxesGizmo",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.make_axes_gizmo.MakeAxesGizmo, type: Literal['make_axes_gizmo'] = 'make_axes_gizmo') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MakeAxesGizmo[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakeAxesGizmo, required=True), 'type': FieldInfo(annotation=Literal['make_axes_gizmo'], required=False, default='make_axes_gizmo')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['make_axes_gizmo'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMakeOffsetPath(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.make_offset_path.MakeOffsetPath'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['make_offset_path']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMakeOffsetPath'>, 'config': {'title': 'OptionMakeOffsetPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMakeOffsetPath'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMakeOffsetPath:94248694643776', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.make_offset_path.MakeOffsetPath'>, 'config': {'title': 'MakeOffsetPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.make_offset_path.MakeOffsetPath'>>]}, 'ref': 'kittycad.models.make_offset_path.MakeOffsetPath:94248688013536', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'MakeOffsetPath', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'make_offset_path', 'schema': {'expected': ['make_offset_path'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMakeOffsetPath', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakeOffsetPath, required=True), 'type': FieldInfo(annotation=Literal['make_offset_path'], required=False, default='make_offset_path')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf6fc40,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ff4070,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "make_offset_path",                                             },                                             expected_py: None,                                             name: "literal['make_offset_path']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb91d0e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007f40b3251230,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MakeOffsetPath",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMakeOffsetPath",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMakeOffsetPath", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6d1a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6d110,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007f40b2c93670,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007f40b2c93c70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3251230,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "MakeOffsetPath",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb91d0e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "MakeOffsetPath",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6d170,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6d080,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ff4070,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "make_offset_path": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c8ad80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ff4070,                                                 ),                                             ],                                         },                                         expected_repr: "'make_offset_path'",                                         name: "literal['make_offset_path']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['make_offset_path']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMakeOffsetPath",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf6fc40,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionMakeOffsetPath",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.make_offset_path.MakeOffsetPath, type: Literal['make_offset_path'] = 'make_offset_path') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MakeOffsetPath[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakeOffsetPath, required=True), 'type': FieldInfo(annotation=Literal['make_offset_path'], required=False, default='make_offset_path')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['make_offset_path'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMakePlane(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.make_plane.MakePlane'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['make_plane']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMakePlane'>, 'config': {'title': 'OptionMakePlane'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMakePlane'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMakePlane:94248694027344', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.make_plane.MakePlane'>, 'config': {'title': 'MakePlane'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.make_plane.MakePlane'>>]}, 'ref': 'kittycad.models.make_plane.MakePlane:94248688019744', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'MakePlane', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'make_plane', 'schema': {'expected': ['make_plane'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMakePlane', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakePlane, required=True), 'type': FieldInfo(annotation=Literal['make_plane'], required=False, default='make_plane')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbed9450,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb91e920,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MakePlane",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ff5530,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "make_plane",                                             },                                             expected_py: None,                                             name: "literal['make_plane']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMakePlane",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMakePlane", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2dabb70,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da9e00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "MakePlane",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb91e920,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "MakePlane",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2da8870,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da8ed0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ff5530,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "make_plane": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c35740,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ff5530,                                                 ),                                             ],                                         },                                         expected_repr: "'make_plane'",                                         name: "literal['make_plane']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['make_plane']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMakePlane",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbed9450,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionMakePlane",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.make_plane.MakePlane, type: Literal['make_plane'] = 'make_plane') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MakePlane[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakePlane, required=True), 'type': FieldInfo(annotation=Literal['make_plane'], required=False, default='make_plane')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['make_plane'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMass(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.mass.Mass'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['mass']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMass'>, 'config': {'title': 'OptionMass'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMass'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMass:94248695056592', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.mass.Mass'>, 'config': {'title': 'Mass'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.mass.Mass'>>]}, 'ref': 'kittycad.models.mass.Mass:94248688023824', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'mass': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'output_unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitMass'>, 'members': [UnitMass.G, UnitMass.KG, UnitMass.LB], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_mass.UnitMass:94248685670096', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}}, 'model_name': 'Mass', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'mass', 'schema': {'expected': ['mass'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMass', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Mass, required=True), 'type': FieldInfo(annotation=Literal['mass'], required=False, default='mass')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfd48d0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b42dc630,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "mass",                                             },                                             expected_py: None,                                             name: "literal['mass']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb91f910,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "mass": SerField {                                                     key_py: Py(                                                         0x00007f40b42dc630,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "output_unit": SerField {                                                     key_py: Py(                                                         0x00007f40b3530770,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x000055b7fb6e0ed0,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Mass",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMass",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMass", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2cdc1e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2cdc1b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "mass",                                                 lookup_key: Simple {                                                     key: "mass",                                                     py_key: Py(                                                         0x00007f40b2cdc060,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "mass",                                                                 Py(                                                                     0x00007f40b2cdc180,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b42dc630,                                                 ),                                                 validator: Float(                                                     FloatValidator {                                                         strict: false,                                                         allow_inf_nan: true,                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "output_unit",                                                 lookup_key: Simple {                                                     key: "output_unit",                                                     py_key: Py(                                                         0x00007f40b2ce4fb0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "output_unit",                                                                 Py(                                                                     0x00007f40b2ce4f70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3530770,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x000055b7fb6e0ed0,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "lb": 2,                                                                     "g": 0,                                                                     "kg": 1,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007f40b2ce4f00,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007f40b34bdc10,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bdc70,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bdcd0,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'g', 'kg' or 'lb'",                                                         strict: false,                                                         class_repr: "UnitMass",                                                         name: "str-enum[UnitMass]",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Mass",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb91f910,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Mass",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2cdc090,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2cdc120,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b42dc630,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "mass": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ce5000,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b42dc630,                                                 ),                                             ],                                         },                                         expected_repr: "'mass'",                                         name: "literal['mass']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['mass']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMass",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfd48d0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionMass",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.mass.Mass, type: Literal['mass'] = 'mass') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Mass[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Mass, required=True), 'type': FieldInfo(annotation=Literal['mass'], required=False, default='mass')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['mass'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMouseClick(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.mouse_click.MouseClick'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['mouse_click']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMouseClick'>, 'config': {'title': 'OptionMouseClick'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMouseClick'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMouseClick:94248694795616', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.mouse_click.MouseClick'>, 'config': {'title': 'MouseClick'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.mouse_click.MouseClick'>>]}, 'ref': 'kittycad.models.mouse_click.MouseClick:94248693349488', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entities_modified': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}, 'entities_selected': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'MouseClick', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'mouse_click', 'schema': {'expected': ['mouse_click'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMouseClick', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MouseClick, required=True), 'type': FieldInfo(annotation=Literal['mouse_click'], required=False, default='mouse_click')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf94d60,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe33c70,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entities_modified": SerField {                                                     key_py: Py(                                                         0x00007f40b2e4a630,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "entities_selected": SerField {                                                     key_py: Py(                                                         0x00007f40b2e49bf0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MouseClick",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3e96db0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "mouse_click",                                             },                                             expected_py: None,                                             name: "literal['mouse_click']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMouseClick",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMouseClick", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6edc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6edf0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entities_modified",                                                 lookup_key: Simple {                                                     key: "entities_modified",                                                     py_key: Py(                                                         0x00007f40b2cb2e70,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entities_modified",                                                                 Py(                                                                     0x00007f40b2cb2e30,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b2e4a630,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "entities_selected",                                                 lookup_key: Simple {                                                     key: "entities_selected",                                                     py_key: Py(                                                         0x00007f40b2cb2ef0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entities_selected",                                                                 Py(                                                                     0x00007f40b2cb2eb0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b2e49bf0,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "MouseClick",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe33c70,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "MouseClick",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6ee20,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6ee50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3e96db0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "mouse_click": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cb2f80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3e96db0,                                                 ),                                             ],                                         },                                         expected_repr: "'mouse_click'",                                         name: "literal['mouse_click']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['mouse_click']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMouseClick",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf94d60,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionMouseClick",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.mouse_click.MouseClick, type: Literal['mouse_click'] = 'mouse_click') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MouseClick[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MouseClick, required=True), 'type': FieldInfo(annotation=Literal['mouse_click'], required=False, default='mouse_click')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['mouse_click'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMouseMove(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.mouse_move.MouseMove'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['mouse_move']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMouseMove'>, 'config': {'title': 'OptionMouseMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMouseMove'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMouseMove:94248694055104', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.mouse_move.MouseMove'>, 'config': {'title': 'MouseMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.mouse_move.MouseMove'>>]}, 'ref': 'kittycad.models.mouse_move.MouseMove:94248693356080', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'MouseMove', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'mouse_move', 'schema': {'expected': ['mouse_move'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMouseMove', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MouseMove, required=True), 'type': FieldInfo(annotation=Literal['mouse_move'], required=False, default='mouse_move')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbee00c0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3e96e30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "mouse_move",                                             },                                             expected_py: None,                                             name: "literal['mouse_move']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe35630,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MouseMove",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMouseMove",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMouseMove", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2dabd50,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da8210,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "MouseMove",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe35630,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "MouseMove",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dabb10,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2dabc00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3e96e30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "mouse_move": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c35040,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3e96e30,                                                 ),                                             ],                                         },                                         expected_repr: "'mouse_move'",                                         name: "literal['mouse_move']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['mouse_move']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMouseMove",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbee00c0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionMouseMove",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.mouse_move.MouseMove, type: Literal['mouse_move'] = 'mouse_move') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MouseMove[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MouseMove, required=True), 'type': FieldInfo(annotation=Literal['mouse_move'], required=False, default='mouse_move')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['mouse_move'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMovePathPen(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.move_path_pen.MovePathPen'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['move_path_pen']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMovePathPen'>, 'config': {'title': 'OptionMovePathPen'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMovePathPen'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMovePathPen:94248693753888', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.move_path_pen.MovePathPen'>, 'config': {'title': 'MovePathPen'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.move_path_pen.MovePathPen'>>]}, 'ref': 'kittycad.models.move_path_pen.MovePathPen:94248693358544', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'MovePathPen', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'move_path_pen', 'schema': {'expected': ['move_path_pen'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMovePathPen', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MovePathPen, required=True), 'type': FieldInfo(annotation=Literal['move_path_pen'], required=False, default='move_path_pen')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbe96820,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3e96eb0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "move_path_pen",                                             },                                             expected_py: None,                                             name: "literal['move_path_pen']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe35fd0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MovePathPen",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMovePathPen",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMovePathPen", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2daba20,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2daba50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "MovePathPen",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe35fd0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "MovePathPen",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2daba80,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2dabab0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3e96eb0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "move_path_pen": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2de39c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3e96eb0,                                                 ),                                             ],                                         },                                         expected_repr: "'move_path_pen'",                                         name: "literal['move_path_pen']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['move_path_pen']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMovePathPen",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbe96820,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionMovePathPen",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.move_path_pen.MovePathPen, type: Literal['move_path_pen'] = 'move_path_pen') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MovePathPen[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MovePathPen, required=True), 'type': FieldInfo(annotation=Literal['move_path_pen'], required=False, default='move_path_pen')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['move_path_pen'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionNewAnnotation(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.new_annotation.NewAnnotation'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['new_annotation']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionNewAnnotation'>, 'config': {'title': 'OptionNewAnnotation'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionNewAnnotation'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionNewAnnotation:94248693924672', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.new_annotation.NewAnnotation'>, 'config': {'title': 'NewAnnotation'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.new_annotation.NewAnnotation'>>]}, 'ref': 'kittycad.models.new_annotation.NewAnnotation:94248693361792', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'NewAnnotation', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'new_annotation', 'schema': {'expected': ['new_annotation'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionNewAnnotation', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=NewAnnotation, required=True), 'type': FieldInfo(annotation=Literal['new_annotation'], required=False, default='new_annotation')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbec0340,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe36c80,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "NewAnnotation",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3e96f30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "new_annotation",                                             },                                             expected_py: None,                                             name: "literal['new_annotation']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionNewAnnotation",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionNewAnnotation", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2da8a80,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2dab240,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "NewAnnotation",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe36c80,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "NewAnnotation",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2da8e10,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2daa5b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3e96f30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "new_annotation": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ddbd40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3e96f30,                                                 ),                                             ],                                         },                                         expected_repr: "'new_annotation'",                                         name: "literal['new_annotation']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['new_annotation']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionNewAnnotation",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbec0340,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionNewAnnotation",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.new_annotation.NewAnnotation, type: Literal['new_annotation'] = 'new_annotation') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: NewAnnotation[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=NewAnnotation, required=True), 'type': FieldInfo(annotation=Literal['new_annotation'], required=False, default='new_annotation')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['new_annotation'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionObjectBringToFront(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.object_bring_to_front.ObjectBringToFront'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['object_bring_to_front']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectBringToFront'>, 'config': {'title': 'OptionObjectBringToFront'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectBringToFront'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionObjectBringToFront:94248693961904', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.object_bring_to_front.ObjectBringToFront'>, 'config': {'title': 'ObjectBringToFront'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.object_bring_to_front.ObjectBringToFront'>>]}, 'ref': 'kittycad.models.object_bring_to_front.ObjectBringToFront:94248693378336', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'ObjectBringToFront', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'object_bring_to_front', 'schema': {'expected': ['object_bring_to_front'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionObjectBringToFront', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectBringToFront, required=True), 'type': FieldInfo(annotation=Literal['object_bring_to_front'], required=False, default='object_bring_to_front')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbec94b0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3e971b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "object_bring_to_front",                                             },                                             expected_py: None,                                             name: "literal['object_bring_to_front']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe3ad20,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ObjectBringToFront",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionObjectBringToFront",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionObjectBringToFront", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c41230,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c41260,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "ObjectBringToFront",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe3ad20,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ObjectBringToFront",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c41290,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c412c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3e971b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "object_bring_to_front": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2daea40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3e971b0,                                                 ),                                             ],                                         },                                         expected_repr: "'object_bring_to_front'",                                         name: "literal['object_bring_to_front']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['object_bring_to_front']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionObjectBringToFront",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbec94b0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionObjectBringToFront",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.object_bring_to_front.ObjectBringToFront, type: Literal['object_bring_to_front'] = 'object_bring_to_front') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ObjectBringToFront[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectBringToFront, required=True), 'type': FieldInfo(annotation=Literal['object_bring_to_front'], required=False, default='object_bring_to_front')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['object_bring_to_front'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionObjectSetMaterialParamsPbr(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.object_set_material_params_pbr.ObjectSetMaterialParamsPbr'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['object_set_material_params_pbr']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectSetMaterialParamsPbr'>, 'config': {'title': 'OptionObjectSetMaterialParamsPbr'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectSetMaterialParamsPbr'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionObjectSetMaterialParamsPbr:94248693971280', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.object_set_material_params_pbr.ObjectSetMaterialParamsPbr'>, 'config': {'title': 'ObjectSetMaterialParamsPbr'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.object_set_material_params_pbr.ObjectSetMaterialParamsPbr'>>]}, 'ref': 'kittycad.models.object_set_material_params_pbr.ObjectSetMaterialParamsPbr:94248693382752', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'ObjectSetMaterialParamsPbr', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'object_set_material_params_pbr', 'schema': {'expected': ['object_set_material_params_pbr'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionObjectSetMaterialParamsPbr', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectSetMaterialParamsPbr, required=True), 'type': FieldInfo(annotation=Literal['object_set_material_params_pbr'], required=False, default='object_set_material_params_pbr')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbecb950,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef4940,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "object_set_material_params_pbr",                                             },                                             expected_py: None,                                             name: "literal['object_set_material_params_pbr']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe3be60,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ObjectSetMaterialParamsPbr",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionObjectSetMaterialParamsPbr",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionObjectSetMaterialParamsPbr", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c415f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c41620,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "ObjectSetMaterialParamsPbr",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe3be60,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ObjectSetMaterialParamsPbr",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c41650,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1c900,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef4940,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "object_set_material_params_pbr": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dadbc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef4940,                                                 ),                                             ],                                         },                                         expected_repr: "'object_set_material_params_pbr'",                                         name: "literal['object_set_material_params_pbr']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['object_set_material_params_pbr']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionObjectSetMaterialParamsPbr",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbecb950,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionObjectSetMaterialParamsPbr",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.object_set_material_params_pbr.ObjectSetMaterialParamsPbr, type: Literal['object_set_material_params_pbr'] = 'object_set_material_params_pbr') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ObjectSetMaterialParamsPbr[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectSetMaterialParamsPbr, required=True), 'type': FieldInfo(annotation=Literal['object_set_material_params_pbr'], required=False, default='object_set_material_params_pbr')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['object_set_material_params_pbr'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionObjectVisible(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.object_visible.ObjectVisible'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['object_visible']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectVisible'>, 'config': {'title': 'OptionObjectVisible'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectVisible'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionObjectVisible:94248693952544', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.object_visible.ObjectVisible'>, 'config': {'title': 'ObjectVisible'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.object_visible.ObjectVisible'>>]}, 'ref': 'kittycad.models.object_visible.ObjectVisible:94248693385296', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'ObjectVisible', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'object_visible', 'schema': {'expected': ['object_visible'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionObjectVisible', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectVisible, required=True), 'type': FieldInfo(annotation=Literal['object_visible'], required=False, default='object_visible')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbec7020,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe3c850,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ObjectVisible",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3e972f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "object_visible",                                             },                                             expected_py: None,                                             name: "literal['object_visible']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionObjectVisible",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionObjectVisible", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40330,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c40480,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "ObjectVisible",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe3c850,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ObjectVisible",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c403f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40360,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3e972f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "object_visible": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2daf8c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3e972f0,                                                 ),                                             ],                                         },                                         expected_repr: "'object_visible'",                                         name: "literal['object_visible']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['object_visible']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionObjectVisible",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbec7020,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionObjectVisible",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.object_visible.ObjectVisible, type: Literal['object_visible'] = 'object_visible') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ObjectVisible[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectVisible, required=True), 'type': FieldInfo(annotation=Literal['object_visible'], required=False, default='object_visible')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['object_visible'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuid(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_get_curve_uuid.PathGetCurveUuid'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_get_curve_uuid']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuid'>, 'config': {'title': 'OptionPathGetCurveUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuid'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuid:94248694878112', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_get_curve_uuid.PathGetCurveUuid'>, 'config': {'title': 'PathGetCurveUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_get_curve_uuid.PathGetCurveUuid'>>]}, 'ref': 'kittycad.models.path_get_curve_uuid.PathGetCurveUuid:94248693558544', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'curve_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'PathGetCurveUuid', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_get_curve_uuid', 'schema': {'expected': ['path_get_curve_uuid'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathGetCurveUuid', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetCurveUuid, required=True), 'type': FieldInfo(annotation=Literal['path_get_curve_uuid'], required=False, default='path_get_curve_uuid')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfa8fa0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3e97b70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_get_curve_uuid",                                             },                                             expected_py: None,                                             name: "literal['path_get_curve_uuid']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe66d10,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "curve_id": SerField {                                                     key_py: Py(                                                         0x00007f40b315fbb0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathGetCurveUuid",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathGetCurveUuid",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathGetCurveUuid", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6f210,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6f240,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "curve_id",                                                 lookup_key: Simple {                                                     key: "curve_id",                                                     py_key: Py(                                                         0x00007f40b2cc33b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "curve_id",                                                                 Py(                                                                     0x00007f40b2cc3370,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b315fbb0,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathGetCurveUuid",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe66d10,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "PathGetCurveUuid",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6f270,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6f2a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3e97b70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_get_curve_uuid": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cc3400,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3e97b70,                                                 ),                                             ],                                         },                                         expected_repr: "'path_get_curve_uuid'",                                         name: "literal['path_get_curve_uuid']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_get_curve_uuid']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathGetCurveUuid",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfa8fa0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionPathGetCurveUuid",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_get_curve_uuid.PathGetCurveUuid, type: Literal['path_get_curve_uuid'] = 'path_get_curve_uuid') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathGetCurveUuid[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetCurveUuid, required=True), 'type': FieldInfo(annotation=Literal['path_get_curve_uuid'], required=False, default='path_get_curve_uuid')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_get_curve_uuid'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuidsForVertices(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_get_curve_uuids_for_vertices.PathGetCurveUuidsForVertices'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_get_curve_uuids_for_vertices']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuidsForVertices'>, 'config': {'title': 'OptionPathGetCurveUuidsForVertices'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuidsForVertices'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuidsForVertices:94248694865792', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_get_curve_uuids_for_vertices.PathGetCurveUuidsForVertices'>, 'config': {'title': 'PathGetCurveUuidsForVertices'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_get_curve_uuids_for_vertices.PathGetCurveUuidsForVertices'>>]}, 'ref': 'kittycad.models.path_get_curve_uuids_for_vertices.PathGetCurveUuidsForVertices:94248693564144', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'curve_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'PathGetCurveUuidsForVertices', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_get_curve_uuids_for_vertices', 'schema': {'expected': ['path_get_curve_uuids_for_vertices'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathGetCurveUuidsForVertices', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetCurveUuidsForVertices, required=True), 'type': FieldInfo(annotation=Literal['path_get_curve_uuids_for_vertices'], required=False, default='path_get_curve_uuids_for_vertices')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfa5f80,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe682f0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "curve_ids": SerField {                                                     key_py: Py(                                                         0x00007f40b2e372b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathGetCurveUuidsForVertices",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef4c10,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_get_curve_uuids_for_vertices",                                             },                                             expected_py: None,                                             name: "literal['path_get_curve_uuids_for_vertices']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathGetCurveUuidsForVertices",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathGetCurveUuidsForVertices", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6e520,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6e580,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "curve_ids",                                                 lookup_key: Simple {                                                     key: "curve_ids",                                                     py_key: Py(                                                         0x00007f40b2cc22f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "curve_ids",                                                                 Py(                                                                     0x00007f40b2cc22b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b2e372b0,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathGetCurveUuidsForVertices",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe682f0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "PathGetCurveUuidsForVertices",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6e550,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6e790,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef4c10,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_get_curve_uuids_for_vertices": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cc2340,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef4c10,                                                 ),                                             ],                                         },                                         expected_repr: "'path_get_curve_uuids_for_vertices'",                                         name: "literal['path_get_curve_uuids_for_vertices']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_get_curve_uuids_for_vertices']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathGetCurveUuidsForVertices",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfa5f80,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionPathGetCurveUuidsForVertices",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_get_curve_uuids_for_vertices.PathGetCurveUuidsForVertices, type: Literal['path_get_curve_uuids_for_vertices'] = 'path_get_curve_uuids_for_vertices') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathGetCurveUuidsForVertices[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetCurveUuidsForVertices, required=True), 'type': FieldInfo(annotation=Literal['path_get_curve_uuids_for_vertices'], required=False, default='path_get_curve_uuids_for_vertices')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_get_curve_uuids_for_vertices'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathGetInfo(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_get_info.PathGetInfo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_get_info']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetInfo'>, 'config': {'title': 'OptionPathGetInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetInfo'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathGetInfo:94248694824480', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_get_info.PathGetInfo'>, 'config': {'title': 'PathGetInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_get_info.PathGetInfo'>>]}, 'ref': 'kittycad.models.path_get_info.PathGetInfo:94248693598080', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'segments': {'metadata': {}, 'schema': {'items_schema': {'cls': <class 'kittycad.models.path_segment_info.PathSegmentInfo'>, 'config': {'title': 'PathSegmentInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_segment_info.PathSegmentInfo'>>]}, 'ref': 'kittycad.models.path_segment_info.PathSegmentInfo:94248693573856', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'command': {'metadata': {}, 'schema': {'cls': <enum 'PathCommand'>, 'members': [PathCommand.MOVE_TO, PathCommand.LINE_TO, PathCommand.BEZ_CURVE_TO, PathCommand.NURBS_CURVE_TO, PathCommand.ADD_ARC], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.path_command.PathCommand:94248693570864', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'command_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'function': {'function': <class 'kittycad.models.modeling_cmd_id.ModelingCmdId'>, 'type': 'no-info'}, 'schema': {'type': 'str'}, 'type': 'function-after'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'relative': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}}, 'model_name': 'PathSegmentInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'PathGetInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_get_info', 'schema': {'expected': ['path_get_info'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathGetInfo', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetInfo, required=True), 'type': FieldInfo(annotation=Literal['path_get_info'], required=False, default='path_get_info')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf9be20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3e97c70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_get_info",                                             },                                             expected_py: None,                                             name: "literal['path_get_info']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe70780,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "segments": SerField {                                                     key_py: Py(                                                         0x00007f40b6b3dd30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Model(                                                                     ModelSerializer {                                                                         class: Py(                                                                             0x000055b7fbe6a8e0,                                                                         ),                                                                         serializer: Fields(                                                                             GeneralFieldsSerializer {                                                                                 fields: {                                                                                     "relative": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b64b1870,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Bool(                                                                                                 BoolSerializer,                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "command": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b7c1dd28,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Enum(                                                                                                 EnumSerializer {                                                                                                     class: Py(                                                                                                         0x000055b7fbe69d30,                                                                                                     ),                                                                                                     serializer: Some(                                                                                                         Str(                                                                                                             StrSerializer,                                                                                                         ),                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "command_id": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b2dcb6b0,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             WithDefault(                                                                                                 WithDefaultSerializer {                                                                                                     default: Default(                                                                                                         Py(                                                                                                             0x00007f40b7b2d100,                                                                                                         ),                                                                                                     ),                                                                                                     serializer: Nullable(                                                                                                         NullableSerializer {                                                                                                             serializer: Str(                                                                                                                 StrSerializer,                                                                                                             ),                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                 },                                                                                 computed_fields: Some(                                                                                     ComputedFields(                                                                                         [],                                                                                     ),                                                                                 ),                                                                                 mode: SimpleDict,                                                                                 extra_serializer: None,                                                                                 filter: SchemaFilter {                                                                                     include: None,                                                                                     exclude: None,                                                                                 },                                                                                 required_fields: 3,                                                                             },                                                                         ),                                                                         has_extra: false,                                                                         root_model: false,                                                                         name: "PathSegmentInfo",                                                                     },                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[PathSegmentInfo]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathGetInfo",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathGetInfo",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathGetInfo", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6eb80,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6eb50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "segments",                                                 lookup_key: Simple {                                                     key: "segments",                                                     py_key: Py(                                                         0x00007f40b2cb01f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "segments",                                                                 Py(                                                                     0x00007f40b2cb3b70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b6b3dd30,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Model(                                                                 ModelValidator {                                                                     revalidate: Never,                                                                     validator: ModelFields(                                                                         ModelFieldsValidator {                                                                             fields: [                                                                                 Field {                                                                                     name: "command",                                                                                     lookup_key: Simple {                                                                                         key: "command",                                                                                         py_key: Py(                                                                                             0x00007f40b2c6ec10,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "command",                                                                                                     Py(                                                                                                         0x00007f40b2c6eaf0,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b7c1dd28,                                                                                     ),                                                                                     validator: StrEnum(                                                                                         EnumValidator {                                                                                             phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                                                             class: Py(                                                                                                 0x000055b7fbe69d30,                                                                                             ),                                                                                             lookup: LiteralLookup {                                                                                                 expected_bool: None,                                                                                                 expected_int: None,                                                                                                 expected_str: Some(                                                                                                     {                                                                                                         "bez_curve_to": 2,                                                                                                         "line_to": 1,                                                                                                         "nurbs_curve_to": 3,                                                                                                         "add_arc": 4,                                                                                                         "move_to": 0,                                                                                                     },                                                                                                 ),                                                                                                 expected_py_dict: None,                                                                                                 expected_py_values: None,                                                                                                 expected_py_primitives: Some(                                                                                                     Py(                                                                                                         0x00007f40b2cb1600,                                                                                                     ),                                                                                                 ),                                                                                                 values: [                                                                                                     Py(                                                                                                         0x00007f40b3125df0,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007f40b3125e50,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007f40b3125eb0,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007f40b3125f10,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007f40b3125f70,                                                                                                     ),                                                                                                 ],                                                                                             },                                                                                             missing: None,                                                                                             expected_repr: "'move_to', 'line_to', 'bez_curve_to', 'nurbs_curve_to' or 'add_arc'",                                                                                             strict: false,                                                                                             class_repr: "PathCommand",                                                                                             name: "str-enum[PathCommand]",                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "command_id",                                                                                     lookup_key: Simple {                                                                                         key: "command_id",                                                                                         py_key: Py(                                                                                             0x00007f40b2cb0d70,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "command_id",                                                                                                     Py(                                                                                                         0x00007f40b2cb11f0,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b2dcb6b0,                                                                                     ),                                                                                     validator: WithDefault(                                                                                         WithDefaultValidator {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             on_error: Raise,                                                                                             validator: Nullable(                                                                                                 NullableValidator {                                                                                                     validator: FunctionAfter(                                                                                                         FunctionAfterValidator {                                                                                                             validator: Str(                                                                                                                 StrValidator {                                                                                                                     strict: false,                                                                                                                     coerce_numbers_to_str: false,                                                                                                                 },                                                                                                             ),                                                                                                             func: Py(                                                                                                                 0x000055b7fb978c40,                                                                                                             ),                                                                                                             config: Py(                                                                                                                 0x00007f40b2cb2600,                                                                                                             ),                                                                                                             name: "function-after[ModelingCmdId(), str]",                                                                                                             field_name: None,                                                                                                             info_arg: false,                                                                                                         },                                                                                                     ),                                                                                                     name: "nullable[function-after[ModelingCmdId(), str]]",                                                                                                 },                                                                                             ),                                                                                             validate_default: false,                                                                                             copy_default: false,                                                                                             name: "default[nullable[function-after[ModelingCmdId(), str]]]",                                                                                             undefined: Py(                                                                                                 0x00007f40b5be63d0,                                                                                             ),                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "relative",                                                                                     lookup_key: Simple {                                                                                         key: "relative",                                                                                         py_key: Py(                                                                                             0x00007f40b2cb13f0,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "relative",                                                                                                     Py(                                                                                                         0x00007f40b2cb1470,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b64b1870,                                                                                     ),                                                                                     validator: Bool(                                                                                         BoolValidator {                                                                                             strict: false,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                             ],                                                                             model_name: "PathSegmentInfo",                                                                             extra_behavior: Ignore,                                                                             extras_validator: None,                                                                             strict: false,                                                                             from_attributes: false,                                                                             loc_by_alias: true,                                                                         },                                                                     ),                                                                     class: Py(                                                                         0x000055b7fbe6a8e0,                                                                     ),                                                                     generic_origin: None,                                                                     post_init: None,                                                                     frozen: false,                                                                     custom_init: false,                                                                     root_model: false,                                                                     undefined: Py(                                                                         0x00007f40b5be63d0,                                                                     ),                                                                     name: "PathSegmentInfo",                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathGetInfo",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe70780,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "PathGetInfo",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6cfc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6c030,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3e97c70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_get_info": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cb3bc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3e97c70,                                                 ),                                             ],                                         },                                         expected_repr: "'path_get_info'",                                         name: "literal['path_get_info']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_get_info']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathGetInfo",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf9be20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionPathGetInfo",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_get_info.PathGetInfo, type: Literal['path_get_info'] = 'path_get_info') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathGetInfo[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetInfo, required=True), 'type': FieldInfo(annotation=Literal['path_get_info'], required=False, default='path_get_info')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_get_info'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathGetSketchTargetUuid(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_get_sketch_target_uuid.PathGetSketchTargetUuid'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_get_sketch_target_uuid']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetSketchTargetUuid'>, 'config': {'title': 'OptionPathGetSketchTargetUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetSketchTargetUuid'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathGetSketchTargetUuid:94248694901520', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_get_sketch_target_uuid.PathGetSketchTargetUuid'>, 'config': {'title': 'PathGetSketchTargetUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_get_sketch_target_uuid.PathGetSketchTargetUuid'>>]}, 'ref': 'kittycad.models.path_get_sketch_target_uuid.PathGetSketchTargetUuid:94248693616528', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'target_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'PathGetSketchTargetUuid', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_get_sketch_target_uuid', 'schema': {'expected': ['path_get_sketch_target_uuid'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathGetSketchTargetUuid', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetSketchTargetUuid, required=True), 'type': FieldInfo(annotation=Literal['path_get_sketch_target_uuid'], required=False, default='path_get_sketch_target_uuid')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfaeb10,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef5200,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_get_sketch_target_uuid",                                             },                                             expected_py: None,                                             name: "literal['path_get_sketch_target_uuid']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe74f90,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "target_id": SerField {                                                     key_py: Py(                                                         0x00007f40b7c0f620,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathGetSketchTargetUuid",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathGetSketchTargetUuid",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathGetSketchTargetUuid", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6f960,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6f990,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "target_id",                                                 lookup_key: Simple {                                                     key: "target_id",                                                     py_key: Py(                                                         0x00007f40b2ccd6f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "target_id",                                                                 Py(                                                                     0x00007f40b2ccd6b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c0f620,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathGetSketchTargetUuid",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe74f90,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "PathGetSketchTargetUuid",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6f9c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6f9f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef5200,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_get_sketch_target_uuid": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ccd740,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef5200,                                                 ),                                             ],                                         },                                         expected_repr: "'path_get_sketch_target_uuid'",                                         name: "literal['path_get_sketch_target_uuid']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_get_sketch_target_uuid']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathGetSketchTargetUuid",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfaeb10,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionPathGetSketchTargetUuid",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_get_sketch_target_uuid.PathGetSketchTargetUuid, type: Literal['path_get_sketch_target_uuid'] = 'path_get_sketch_target_uuid') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathGetSketchTargetUuid[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetSketchTargetUuid, required=True), 'type': FieldInfo(annotation=Literal['path_get_sketch_target_uuid'], required=False, default='path_get_sketch_target_uuid')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_get_sketch_target_uuid'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathGetVertexUuids(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_get_vertex_uuids.PathGetVertexUuids'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_get_vertex_uuids']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetVertexUuids'>, 'config': {'title': 'OptionPathGetVertexUuids'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetVertexUuids'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathGetVertexUuids:94248694889408', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_get_vertex_uuids.PathGetVertexUuids'>, 'config': {'title': 'PathGetVertexUuids'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_get_vertex_uuids.PathGetVertexUuids'>>]}, 'ref': 'kittycad.models.path_get_vertex_uuids.PathGetVertexUuids:94248693388480', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'vertex_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'PathGetVertexUuids', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_get_vertex_uuids', 'schema': {'expected': ['path_get_vertex_uuids'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathGetVertexUuids', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetVertexUuids, required=True), 'type': FieldInfo(annotation=Literal['path_get_vertex_uuids'], required=False, default='path_get_vertex_uuids')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfabbc0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe3d4c0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "vertex_ids": SerField {                                                     key_py: Py(                                                         0x00007f40b30bb5b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathGetVertexUuids",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3e97df0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_get_vertex_uuids",                                             },                                             expected_py: None,                                             name: "literal['path_get_vertex_uuids']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathGetVertexUuids",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathGetVertexUuids", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6f5a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6f5d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "vertex_ids",                                                 lookup_key: Simple {                                                     key: "vertex_ids",                                                     py_key: Py(                                                         0x00007f40b2ccc5f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "vertex_ids",                                                                 Py(                                                                     0x00007f40b2ccc5b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b30bb5b0,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathGetVertexUuids",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe3d4c0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "PathGetVertexUuids",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6f600,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6f630,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3e97df0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_get_vertex_uuids": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ccc640,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3e97df0,                                                 ),                                             ],                                         },                                         expected_repr: "'path_get_vertex_uuids'",                                         name: "literal['path_get_vertex_uuids']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_get_vertex_uuids']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathGetVertexUuids",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfabbc0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionPathGetVertexUuids",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_get_vertex_uuids.PathGetVertexUuids, type: Literal['path_get_vertex_uuids'] = 'path_get_vertex_uuids') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathGetVertexUuids[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetVertexUuids, required=True), 'type': FieldInfo(annotation=Literal['path_get_vertex_uuids'], required=False, default='path_get_vertex_uuids')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_get_vertex_uuids'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathSegmentInfo(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_segment_info.PathSegmentInfo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_segment_info']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathSegmentInfo'>, 'config': {'title': 'OptionPathSegmentInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathSegmentInfo'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathSegmentInfo:94248689380928', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_segment_info.PathSegmentInfo'>, 'config': {'title': 'PathSegmentInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_segment_info.PathSegmentInfo'>>]}, 'ref': 'kittycad.models.path_segment_info.PathSegmentInfo:94248693573856', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'command': {'metadata': {}, 'schema': {'cls': <enum 'PathCommand'>, 'members': [PathCommand.MOVE_TO, PathCommand.LINE_TO, PathCommand.BEZ_CURVE_TO, PathCommand.NURBS_CURVE_TO, PathCommand.ADD_ARC], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.path_command.PathCommand:94248693570864', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'command_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'function': {'function': <class 'kittycad.models.modeling_cmd_id.ModelingCmdId'>, 'type': 'no-info'}, 'schema': {'type': 'str'}, 'type': 'function-after'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'relative': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}}, 'model_name': 'PathSegmentInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_segment_info', 'schema': {'expected': ['path_segment_info'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathSegmentInfo', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathSegmentInfo, required=True), 'type': FieldInfo(annotation=Literal['path_segment_info'], required=False, default='path_segment_info')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fba6ae40,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3e97f70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_segment_info",                                             },                                             expected_py: None,                                             name: "literal['path_segment_info']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe6a8e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "relative": SerField {                                                     key_py: Py(                                                         0x00007f40b64b1870,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Bool(                                                             BoolSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "command": SerField {                                                     key_py: Py(                                                         0x00007f40b7c1dd28,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x000055b7fbe69d30,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "command_id": SerField {                                                     key_py: Py(                                                         0x00007f40b2dcb6b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 3,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathSegmentInfo",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathSegmentInfo",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathSegmentInfo", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6db90,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6dc20,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "command",                                                 lookup_key: Simple {                                                     key: "command",                                                     py_key: Py(                                                         0x00007f40b2c6db30,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "command",                                                                 Py(                                                                     0x00007f40b2c6db60,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c1dd28,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x000055b7fbe69d30,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "add_arc": 4,                                                                     "line_to": 1,                                                                     "move_to": 0,                                                                     "nurbs_curve_to": 3,                                                                     "bez_curve_to": 2,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007f40b2cc1140,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007f40b3125df0,                                                                 ),                                                                 Py(                                                                     0x00007f40b3125e50,                                                                 ),                                                                 Py(                                                                     0x00007f40b3125eb0,                                                                 ),                                                                 Py(                                                                     0x00007f40b3125f10,                                                                 ),                                                                 Py(                                                                     0x00007f40b3125f70,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'move_to', 'line_to', 'bez_curve_to', 'nurbs_curve_to' or 'add_arc'",                                                         strict: false,                                                         class_repr: "PathCommand",                                                         name: "str-enum[PathCommand]",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "command_id",                                                 lookup_key: Simple {                                                     key: "command_id",                                                     py_key: Py(                                                         0x00007f40b2cc11f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "command_id",                                                                 Py(                                                                     0x00007f40b2cc11b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b2dcb6b0,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: FunctionAfter(                                                                     FunctionAfterValidator {                                                                         validator: Str(                                                                             StrValidator {                                                                                 strict: false,                                                                                 coerce_numbers_to_str: false,                                                                             },                                                                         ),                                                                         func: Py(                                                                             0x000055b7fb978c40,                                                                         ),                                                                         config: Py(                                                                             0x00007f40b2cc0f00,                                                                         ),                                                                         name: "function-after[ModelingCmdId(), str]",                                                                         field_name: None,                                                                         info_arg: false,                                                                     },                                                                 ),                                                                 name: "nullable[function-after[ModelingCmdId(), str]]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[function-after[ModelingCmdId(), str]]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "relative",                                                 lookup_key: Simple {                                                     key: "relative",                                                     py_key: Py(                                                         0x00007f40b2cc1230,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "relative",                                                                 Py(                                                                     0x00007f40b2cc1270,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b64b1870,                                                 ),                                                 validator: Bool(                                                     BoolValidator {                                                         strict: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathSegmentInfo",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe6a8e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "PathSegmentInfo",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6dbc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6df50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3e97f70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_segment_info": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cc12c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3e97f70,                                                 ),                                             ],                                         },                                         expected_repr: "'path_segment_info'",                                         name: "literal['path_segment_info']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_segment_info']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathSegmentInfo",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fba6ae40,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionPathSegmentInfo",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_segment_info.PathSegmentInfo, type: Literal['path_segment_info'] = 'path_segment_info') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathSegmentInfo[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathSegmentInfo, required=True), 'type': FieldInfo(annotation=Literal['path_segment_info'], required=False, default='path_segment_info')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_segment_info'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPlaneIntersectAndProject(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.plane_intersect_and_project.PlaneIntersectAndProject'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['plane_intersect_and_project']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPlaneIntersectAndProject'>, 'config': {'title': 'OptionPlaneIntersectAndProject'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPlaneIntersectAndProject'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPlaneIntersectAndProject:94248695013904', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.plane_intersect_and_project.PlaneIntersectAndProject'>, 'config': {'title': 'PlaneIntersectAndProject'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.plane_intersect_and_project.PlaneIntersectAndProject'>>]}, 'ref': 'kittycad.models.plane_intersect_and_project.PlaneIntersectAndProject:94248693624608', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'plane_coordinates': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'cls': <class 'kittycad.models.point2d.Point2d'>, 'config': {'title': 'Point2d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point2d.Point2d'>>]}, 'ref': 'kittycad.models.point2d.Point2d:94248688399200', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}}, 'model_name': 'Point2d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'PlaneIntersectAndProject', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'plane_intersect_and_project', 'schema': {'expected': ['plane_intersect_and_project'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPlaneIntersectAndProject', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PlaneIntersectAndProject, required=True), 'type': FieldInfo(annotation=Literal['plane_intersect_and_project'], required=False, default='plane_intersect_and_project')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfca210,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef5340,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "plane_intersect_and_project",                                             },                                             expected_py: None,                                             name: "literal['plane_intersect_and_project']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe76f20,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "plane_coordinates": SerField {                                                     key_py: Py(                                                         0x00007f40b2df9830,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Model(                                                                             ModelSerializer {                                                                                 class: Py(                                                                                     0x000055b7fb97b360,                                                                                 ),                                                                                 serializer: Fields(                                                                                     GeneralFieldsSerializer {                                                                                         fields: {                                                                                             "x": SerField {                                                                                                 key_py: Py(                                                                                                     0x00007f40b7c24420,                                                                                                 ),                                                                                                 alias: None,                                                                                                 alias_py: None,                                                                                                 serializer: Some(                                                                                                     Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 ),                                                                                                 required: true,                                                                                             },                                                                                             "y": SerField {                                                                                                 key_py: Py(                                                                                                     0x00007f40b7c24450,                                                                                                 ),                                                                                                 alias: None,                                                                                                 alias_py: None,                                                                                                 serializer: Some(                                                                                                     Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 ),                                                                                                 required: true,                                                                                             },                                                                                         },                                                                                         computed_fields: Some(                                                                                             ComputedFields(                                                                                                 [],                                                                                             ),                                                                                         ),                                                                                         mode: SimpleDict,                                                                                         extra_serializer: None,                                                                                         filter: SchemaFilter {                                                                                             include: None,                                                                                             exclude: None,                                                                                         },                                                                                         required_fields: 2,                                                                                     },                                                                                 ),                                                                                 has_extra: false,                                                                                 root_model: false,                                                                                 name: "Point2d",                                                                             },                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PlaneIntersectAndProject",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPlaneIntersectAndProject",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPlaneIntersectAndProject", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6fcf0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6fd50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "plane_coordinates",                                                 lookup_key: Simple {                                                     key: "plane_coordinates",                                                     py_key: Py(                                                         0x00007f40b3fc49b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "plane_coordinates",                                                                 Py(                                                                     0x00007f40b3108970,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b2df9830,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Model(                                                                     ModelValidator {                                                                         revalidate: Never,                                                                         validator: ModelFields(                                                                             ModelFieldsValidator {                                                                                 fields: [                                                                                     Field {                                                                                         name: "x",                                                                                         lookup_key: Simple {                                                                                             key: "x",                                                                                             py_key: Py(                                                                                                 0x00007f40b7c24420,                                                                                             ),                                                                                             path: LookupPath(                                                                                                 [                                                                                                     S(                                                                                                         "x",                                                                                                         Py(                                                                                                             0x00007f40b7c24420,                                                                                                         ),                                                                                                     ),                                                                                                 ],                                                                                             ),                                                                                         },                                                                                         name_py: Py(                                                                                             0x00007f40b7c24420,                                                                                         ),                                                                                         validator: FunctionAfter(                                                                                             FunctionAfterValidator {                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 func: Py(                                                                                                     0x000055b7fb805a70,                                                                                                 ),                                                                                                 config: Py(                                                                                                     0x00007f40b2cc0440,                                                                                                 ),                                                                                                 name: "function-after[LengthUnit(), float]",                                                                                                 field_name: None,                                                                                                 info_arg: false,                                                                                             },                                                                                         ),                                                                                         frozen: false,                                                                                     },                                                                                     Field {                                                                                         name: "y",                                                                                         lookup_key: Simple {                                                                                             key: "y",                                                                                             py_key: Py(                                                                                                 0x00007f40b7c24450,                                                                                             ),                                                                                             path: LookupPath(                                                                                                 [                                                                                                     S(                                                                                                         "y",                                                                                                         Py(                                                                                                             0x00007f40b7c24450,                                                                                                         ),                                                                                                     ),                                                                                                 ],                                                                                             ),                                                                                         },                                                                                         name_py: Py(                                                                                             0x00007f40b7c24450,                                                                                         ),                                                                                         validator: FunctionAfter(                                                                                             FunctionAfterValidator {                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 func: Py(                                                                                                     0x000055b7fb805a70,                                                                                                 ),                                                                                                 config: Py(                                                                                                     0x00007f40b2cc0440,                                                                                                 ),                                                                                                 name: "function-after[LengthUnit(), float]",                                                                                                 field_name: None,                                                                                                 info_arg: false,                                                                                             },                                                                                         ),                                                                                         frozen: false,                                                                                     },                                                                                 ],                                                                                 model_name: "Point2d",                                                                                 extra_behavior: Ignore,                                                                                 extras_validator: None,                                                                                 strict: false,                                                                                 from_attributes: false,                                                                                 loc_by_alias: true,                                                                             },                                                                         ),                                                                         class: Py(                                                                             0x000055b7fb97b360,                                                                         ),                                                                         generic_origin: None,                                                                         post_init: None,                                                                         frozen: false,                                                                         custom_init: false,                                                                         root_model: false,                                                                         undefined: Py(                                                                             0x00007f40b5be63d0,                                                                         ),                                                                         name: "Point2d",                                                                     },                                                                 ),                                                                 name: "nullable[Point2d]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[Point2d]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PlaneIntersectAndProject",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe76f20,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "PlaneIntersectAndProject",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6fc30,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6ed60,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef5340,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "plane_intersect_and_project": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cc1f40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef5340,                                                 ),                                             ],                                         },                                         expected_repr: "'plane_intersect_and_project'",                                         name: "literal['plane_intersect_and_project']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['plane_intersect_and_project']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPlaneIntersectAndProject",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfca210,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionPlaneIntersectAndProject",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.plane_intersect_and_project.PlaneIntersectAndProject, type: Literal['plane_intersect_and_project'] = 'plane_intersect_and_project') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PlaneIntersectAndProject[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PlaneIntersectAndProject, required=True), 'type': FieldInfo(annotation=Literal['plane_intersect_and_project'], required=False, default='plane_intersect_and_project')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['plane_intersect_and_project'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPlaneSetColor(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.plane_set_color.PlaneSetColor'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['plane_set_color']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPlaneSetColor'>, 'config': {'title': 'OptionPlaneSetColor'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPlaneSetColor'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPlaneSetColor:94248694036688', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.plane_set_color.PlaneSetColor'>, 'config': {'title': 'PlaneSetColor'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.plane_set_color.PlaneSetColor'>>]}, 'ref': 'kittycad.models.plane_set_color.PlaneSetColor:94248693628768', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'PlaneSetColor', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'plane_set_color', 'schema': {'expected': ['plane_set_color'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPlaneSetColor', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PlaneSetColor, required=True), 'type': FieldInfo(annotation=Literal['plane_set_color'], required=False, default='plane_set_color')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbedb8d0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe77f60,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PlaneSetColor",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f00470,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "plane_set_color",                                             },                                             expected_py: None,                                             name: "literal['plane_set_color']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPlaneSetColor",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPlaneSetColor", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1dfe0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1def0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "PlaneSetColor",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe77f60,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "PlaneSetColor",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1e280,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1e2b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f00470,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "plane_set_color": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c36540,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f00470,                                                 ),                                             ],                                         },                                         expected_repr: "'plane_set_color'",                                         name: "literal['plane_set_color']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['plane_set_color']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPlaneSetColor",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbedb8d0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionPlaneSetColor",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.plane_set_color.PlaneSetColor, type: Literal['plane_set_color'] = 'plane_set_color') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PlaneSetColor[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PlaneSetColor, required=True), 'type': FieldInfo(annotation=Literal['plane_set_color'], required=False, default='plane_set_color')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['plane_set_color'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionReconfigureStream(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.reconfigure_stream.ReconfigureStream'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['reconfigure_stream']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionReconfigureStream'>, 'config': {'title': 'OptionReconfigureStream'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionReconfigureStream'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionReconfigureStream:94248694192720', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.reconfigure_stream.ReconfigureStream'>, 'config': {'title': 'ReconfigureStream'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.reconfigure_stream.ReconfigureStream'>>]}, 'ref': 'kittycad.models.reconfigure_stream.ReconfigureStream:94248693633968', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'ReconfigureStream', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'reconfigure_stream', 'schema': {'expected': ['reconfigure_stream'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionReconfigureStream', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ReconfigureStream, required=True), 'type': FieldInfo(annotation=Literal['reconfigure_stream'], required=False, default='reconfigure_stream')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf01a50,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe793b0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ReconfigureStream",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f00730,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "reconfigure_stream",                                             },                                             expected_py: None,                                             name: "literal['reconfigure_stream']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionReconfigureStream",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionReconfigureStream", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1f5a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1f5d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "ReconfigureStream",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe793b0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ReconfigureStream",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1f600,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f630,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f00730,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "reconfigure_stream": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c5cdc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f00730,                                                 ),                                             ],                                         },                                         expected_repr: "'reconfigure_stream'",                                         name: "literal['reconfigure_stream']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['reconfigure_stream']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionReconfigureStream",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf01a50,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionReconfigureStream",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.reconfigure_stream.ReconfigureStream, type: Literal['reconfigure_stream'] = 'reconfigure_stream') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ReconfigureStream[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ReconfigureStream, required=True), 'type': FieldInfo(annotation=Literal['reconfigure_stream'], required=False, default='reconfigure_stream')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['reconfigure_stream'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionRemoveSceneObjects(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.remove_scene_objects.RemoveSceneObjects'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['remove_scene_objects']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionRemoveSceneObjects'>, 'config': {'title': 'OptionRemoveSceneObjects'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionRemoveSceneObjects'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionRemoveSceneObjects:94248694183376', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.remove_scene_objects.RemoveSceneObjects'>, 'config': {'title': 'RemoveSceneObjects'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.remove_scene_objects.RemoveSceneObjects'>>]}, 'ref': 'kittycad.models.remove_scene_objects.RemoveSceneObjects:94248693403168', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'RemoveSceneObjects', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'remove_scene_objects', 'schema': {'expected': ['remove_scene_objects'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionRemoveSceneObjects', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=RemoveSceneObjects, required=True), 'type': FieldInfo(annotation=Literal['remove_scene_objects'], required=False, default='remove_scene_objects')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeff5d0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f00830,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "remove_scene_objects",                                             },                                             expected_py: None,                                             name: "literal['remove_scene_objects']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe40e20,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "RemoveSceneObjects",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionRemoveSceneObjects",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionRemoveSceneObjects", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1f1e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1f210,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "RemoveSceneObjects",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe40e20,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "RemoveSceneObjects",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1f240,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f270,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f00830,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "remove_scene_objects": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c5c080,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f00830,                                                 ),                                             ],                                         },                                         expected_repr: "'remove_scene_objects'",                                         name: "literal['remove_scene_objects']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['remove_scene_objects']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionRemoveSceneObjects",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeff5d0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionRemoveSceneObjects",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.remove_scene_objects.RemoveSceneObjects, type: Literal['remove_scene_objects'] = 'remove_scene_objects') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: RemoveSceneObjects[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=RemoveSceneObjects, required=True), 'type': FieldInfo(annotation=Literal['remove_scene_objects'], required=False, default='remove_scene_objects')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['remove_scene_objects'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionRevolve(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.revolve.Revolve'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['revolve']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionRevolve'>, 'config': {'title': 'OptionRevolve'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionRevolve'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionRevolve:94248693790784', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.revolve.Revolve'>, 'config': {'title': 'Revolve'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.revolve.Revolve'>>]}, 'ref': 'kittycad.models.revolve.Revolve:94248693406416', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Revolve', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'revolve', 'schema': {'expected': ['revolve'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionRevolve', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Revolve, required=True), 'type': FieldInfo(annotation=Literal['revolve'], required=False, default='revolve')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbe9f840,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe41ad0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Revolve",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b437e5b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "revolve",                                             },                                             expected_py: None,                                             name: "literal['revolve']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionRevolve",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionRevolve", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2daac10,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2daa4f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Revolve",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe41ad0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Revolve",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2daa670,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da89c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b437e5b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "revolve": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd8cc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b437e5b0,                                                 ),                                             ],                                         },                                         expected_repr: "'revolve'",                                         name: "literal['revolve']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['revolve']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionRevolve",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbe9f840,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionRevolve",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.revolve.Revolve, type: Literal['revolve'] = 'revolve') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Revolve[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Revolve, required=True), 'type': FieldInfo(annotation=Literal['revolve'], required=False, default='revolve')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['revolve'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionRevolveAboutEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.revolve_about_edge.RevolveAboutEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['revolve_about_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionRevolveAboutEdge'>, 'config': {'title': 'OptionRevolveAboutEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionRevolveAboutEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionRevolveAboutEdge:94248693812384', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.revolve_about_edge.RevolveAboutEdge'>, 'config': {'title': 'RevolveAboutEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.revolve_about_edge.RevolveAboutEdge'>>]}, 'ref': 'kittycad.models.revolve_about_edge.RevolveAboutEdge:94248693421344', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'RevolveAboutEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'revolve_about_edge', 'schema': {'expected': ['revolve_about_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionRevolveAboutEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=RevolveAboutEdge, required=True), 'type': FieldInfo(annotation=Literal['revolve_about_edge'], required=False, default='revolve_about_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbea4ca0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f00930,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "revolve_about_edge",                                             },                                             expected_py: None,                                             name: "literal['revolve_about_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe45520,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "RevolveAboutEdge",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionRevolveAboutEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionRevolveAboutEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2daa9a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da9bf0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "RevolveAboutEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe45520,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "RevolveAboutEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dab330,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2daaa00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f00930,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "revolve_about_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ddaa80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f00930,                                                 ),                                             ],                                         },                                         expected_repr: "'revolve_about_edge'",                                         name: "literal['revolve_about_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['revolve_about_edge']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionRevolveAboutEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbea4ca0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionRevolveAboutEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.revolve_about_edge.RevolveAboutEdge, type: Literal['revolve_about_edge'] = 'revolve_about_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: RevolveAboutEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=RevolveAboutEdge, required=True), 'type': FieldInfo(annotation=Literal['revolve_about_edge'], required=False, default='revolve_about_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['revolve_about_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSceneClearAll(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.scene_clear_all.SceneClearAll'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['scene_clear_all']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSceneClearAll'>, 'config': {'title': 'OptionSceneClearAll'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSceneClearAll'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSceneClearAll:94248693896816', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.scene_clear_all.SceneClearAll'>, 'config': {'title': 'SceneClearAll'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.scene_clear_all.SceneClearAll'>>]}, 'ref': 'kittycad.models.scene_clear_all.SceneClearAll:94248693425280', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SceneClearAll', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'scene_clear_all', 'schema': {'expected': ['scene_clear_all'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSceneClearAll', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SceneClearAll, required=True), 'type': FieldInfo(annotation=Literal['scene_clear_all'], required=False, default='scene_clear_all')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeb9670,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f00e30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "scene_clear_all",                                             },                                             expected_py: None,                                             name: "literal['scene_clear_all']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe46480,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SceneClearAll",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSceneClearAll",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSceneClearAll", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40ae0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c40b10,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SceneClearAll",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe46480,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SceneClearAll",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40b40,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40b70,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f00e30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "scene_clear_all": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dc3240,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f00e30,                                                 ),                                             ],                                         },                                         expected_repr: "'scene_clear_all'",                                         name: "literal['scene_clear_all']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['scene_clear_all']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSceneClearAll",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeb9670,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSceneClearAll",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.scene_clear_all.SceneClearAll, type: Literal['scene_clear_all'] = 'scene_clear_all') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SceneClearAll[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SceneClearAll, required=True), 'type': FieldInfo(annotation=Literal['scene_clear_all'], required=False, default='scene_clear_all')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['scene_clear_all'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectAdd(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_add.SelectAdd'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_add']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectAdd'>, 'config': {'title': 'OptionSelectAdd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectAdd'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectAdd:94248693877920', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_add.SelectAdd'>, 'config': {'title': 'SelectAdd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_add.SelectAdd'>>]}, 'ref': 'kittycad.models.select_add.SelectAdd:94248693427056', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SelectAdd', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_add', 'schema': {'expected': ['select_add'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectAdd', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectAdd, required=True), 'type': FieldInfo(annotation=Literal['select_add'], required=False, default='select_add')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeb4ca0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe46b70,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectAdd",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f01030,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_add",                                             },                                             expected_py: None,                                             name: "literal['select_add']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectAdd",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectAdd", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40840,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c40720,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SelectAdd",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe46b70,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SelectAdd",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40630,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40750,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f01030,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_add": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd7000,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f01030,                                                 ),                                             ],                                         },                                         expected_repr: "'select_add'",                                         name: "literal['select_add']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_add']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectAdd",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeb4ca0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSelectAdd",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_add.SelectAdd, type: Literal['select_add'] = 'select_add') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectAdd[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectAdd, required=True), 'type': FieldInfo(annotation=Literal['select_add'], required=False, default='select_add')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_add'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectClear(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_clear.SelectClear'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_clear']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectClear'>, 'config': {'title': 'OptionSelectClear'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectClear'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectClear:94248694268880', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_clear.SelectClear'>, 'config': {'title': 'SelectClear'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_clear.SelectClear'>>]}, 'ref': 'kittycad.models.select_clear.SelectClear:94248693418240', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SelectClear', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_clear', 'schema': {'expected': ['select_clear'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectClear', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectClear, required=True), 'type': FieldInfo(annotation=Literal['select_clear'], required=False, default='select_clear')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf143d0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe44900,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectClear",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f010b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_clear",                                             },                                             expected_py: None,                                             name: "literal['select_clear']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectClear",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectClear", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1fe10,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1fe40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SelectClear",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe44900,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SelectClear",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1fe70,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1fea0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f010b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_clear": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c62000,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f010b0,                                                 ),                                             ],                                         },                                         expected_repr: "'select_clear'",                                         name: "literal['select_clear']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_clear']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectClear",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf143d0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSelectClear",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_clear.SelectClear, type: Literal['select_clear'] = 'select_clear') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectClear[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectClear, required=True), 'type': FieldInfo(annotation=Literal['select_clear'], required=False, default='select_clear')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_clear'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectGet(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_get.SelectGet'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_get']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectGet'>, 'config': {'title': 'OptionSelectGet'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectGet'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectGet:94248694665104', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_get.SelectGet'>, 'config': {'title': 'SelectGet'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_get.SelectGet'>>]}, 'ref': 'kittycad.models.select_get.SelectGet:94248693414176', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'SelectGet', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_get', 'schema': {'expected': ['select_get'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectGet', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectGet, required=True), 'type': FieldInfo(annotation=Literal['select_get'], required=False, default='select_get')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf74f90,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f01130,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_get",                                             },                                             expected_py: None,                                             name: "literal['select_get']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe43920,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007f40b3251230,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectGet",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectGet",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectGet", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6d9e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6da10,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007f40b2c9c370,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007f40b2c9c230,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3251230,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "SelectGet",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe43920,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SelectGet",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6da40,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6da70,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f01130,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_get": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c9c1c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f01130,                                                 ),                                             ],                                         },                                         expected_repr: "'select_get'",                                         name: "literal['select_get']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_get']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectGet",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf74f90,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSelectGet",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_get.SelectGet, type: Literal['select_get'] = 'select_get') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectGet[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectGet, required=True), 'type': FieldInfo(annotation=Literal['select_get'], required=False, default='select_get')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_get'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectRemove(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_remove.SelectRemove'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_remove']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectRemove'>, 'config': {'title': 'OptionSelectRemove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectRemove'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectRemove:94248693887456', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_remove.SelectRemove'>, 'config': {'title': 'SelectRemove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_remove.SelectRemove'>>]}, 'ref': 'kittycad.models.select_remove.SelectRemove:94248693429376', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SelectRemove', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_remove', 'schema': {'expected': ['select_remove'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectRemove', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectRemove, required=True), 'type': FieldInfo(annotation=Literal['select_remove'], required=False, default='select_remove')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeb71e0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f011b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_remove",                                             },                                             expected_py: None,                                             name: "literal['select_remove']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe47480,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectRemove",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectRemove",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectRemove", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40390,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c402a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SelectRemove",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe47480,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SelectRemove",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40180,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c400c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f011b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_remove": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd7ec0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f011b0,                                                 ),                                             ],                                         },                                         expected_repr: "'select_remove'",                                         name: "literal['select_remove']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_remove']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectRemove",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeb71e0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSelectRemove",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_remove.SelectRemove, type: Literal['select_remove'] = 'select_remove') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectRemove[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectRemove, required=True), 'type': FieldInfo(annotation=Literal['select_remove'], required=False, default='select_remove')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_remove'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectReplace(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_replace.SelectReplace'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_replace']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectReplace'>, 'config': {'title': 'OptionSelectReplace'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectReplace'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectReplace:94248693905776', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_replace.SelectReplace'>, 'config': {'title': 'SelectReplace'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_replace.SelectReplace'>>]}, 'ref': 'kittycad.models.select_replace.SelectReplace:94248693432624', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SelectReplace', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_replace', 'schema': {'expected': ['select_replace'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectReplace', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectReplace, required=True), 'type': FieldInfo(annotation=Literal['select_replace'], required=False, default='select_replace')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbebb970,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f01230,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_replace",                                             },                                             expected_py: None,                                             name: "literal['select_replace']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe48130,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectReplace",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectReplace",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectReplace", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40e70,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c40ea0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SelectReplace",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe48130,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SelectReplace",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40ed0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40f00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f01230,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_replace": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dc2480,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f01230,                                                 ),                                             ],                                         },                                         expected_repr: "'select_replace'",                                         name: "literal['select_replace']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_replace']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectReplace",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbebb970,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSelectReplace",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_replace.SelectReplace, type: Literal['select_replace'] = 'select_replace') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectReplace[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectReplace, required=True), 'type': FieldInfo(annotation=Literal['select_replace'], required=False, default='select_replace')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_replace'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectWithPoint(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_with_point.SelectWithPoint'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_with_point']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectWithPoint'>, 'config': {'title': 'OptionSelectWithPoint'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectWithPoint'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectWithPoint:94248694297760', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_with_point.SelectWithPoint'>, 'config': {'title': 'SelectWithPoint'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_with_point.SelectWithPoint'>>]}, 'ref': 'kittycad.models.select_with_point.SelectWithPoint:94248693435872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'SelectWithPoint', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_with_point', 'schema': {'expected': ['select_with_point'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectWithPoint', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectWithPoint, required=True), 'type': FieldInfo(annotation=Literal['select_with_point'], required=False, default='select_with_point')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf1b4a0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe48de0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_id": SerField {                                                     key_py: Py(                                                         0x00007f40b3245eb0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectWithPoint",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f012f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_with_point",                                             },                                             expected_py: None,                                             name: "literal['select_with_point']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectWithPoint",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectWithPoint", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1e550,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1e850,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_id",                                                 lookup_key: Simple {                                                     key: "entity_id",                                                     py_key: Py(                                                         0x00007f40b2c60af0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_id",                                                                 Py(                                                                     0x00007f40b2c619b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3245eb0,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "SelectWithPoint",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe48de0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SelectWithPoint",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1f180,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1e910,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f012f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_with_point": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dc1d40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f012f0,                                                 ),                                             ],                                         },                                         expected_repr: "'select_with_point'",                                         name: "literal['select_with_point']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_with_point']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectWithPoint",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf1b4a0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSelectWithPoint",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_with_point.SelectWithPoint, type: Literal['select_with_point'] = 'select_with_point') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectWithPoint[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectWithPoint, required=True), 'type': FieldInfo(annotation=Literal['select_with_point'], required=False, default='select_with_point')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_with_point'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSendObject(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.send_object.SendObject'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['send_object']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSendObject'>, 'config': {'title': 'OptionSendObject'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSendObject'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSendObject:94248693999504', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.send_object.SendObject'>, 'config': {'title': 'SendObject'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.send_object.SendObject'>>]}, 'ref': 'kittycad.models.send_object.SendObject:94248693441872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SendObject', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'send_object', 'schema': {'expected': ['send_object'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSendObject', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SendObject, required=True), 'type': FieldInfo(annotation=Literal['send_object'], required=False, default='send_object')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbed2790,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe4a550,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SendObject",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f013f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "send_object",                                             },                                             expected_py: None,                                             name: "literal['send_object']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSendObject",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSendObject", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40db0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c40ff0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SendObject",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe4a550,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SendObject",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40de0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40f60,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f013f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "send_object": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd6bc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f013f0,                                                 ),                                             ],                                         },                                         expected_repr: "'send_object'",                                         name: "literal['send_object']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['send_object']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSendObject",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbed2790,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSendObject",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.send_object.SendObject, type: Literal['send_object'] = 'send_object') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SendObject[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SendObject, required=True), 'type': FieldInfo(annotation=Literal['send_object'], required=False, default='send_object')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['send_object'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetBackgroundColor(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_background_color.SetBackgroundColor'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_background_color']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetBackgroundColor'>, 'config': {'title': 'OptionSetBackgroundColor'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetBackgroundColor'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetBackgroundColor:94248694111024', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_background_color.SetBackgroundColor'>, 'config': {'title': 'SetBackgroundColor'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_background_color.SetBackgroundColor'>>]}, 'ref': 'kittycad.models.set_background_color.SetBackgroundColor:94248693448208', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetBackgroundColor', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_background_color', 'schema': {'expected': ['set_background_color'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetBackgroundColor', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetBackgroundColor, required=True), 'type': FieldInfo(annotation=Literal['set_background_color'], required=False, default='set_background_color')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeedb30,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe4be10,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetBackgroundColor",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f01730,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_background_color",                                             },                                             expected_py: None,                                             name: "literal['set_background_color']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetBackgroundColor",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetBackgroundColor", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1ea90,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1eac0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetBackgroundColor",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe4be10,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SetBackgroundColor",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1eaf0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1eb20,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f01730,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_background_color": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c4b740,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f01730,                                                 ),                                             ],                                         },                                         expected_repr: "'set_background_color'",                                         name: "literal['set_background_color']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_background_color']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetBackgroundColor",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeedb30,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSetBackgroundColor",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_background_color.SetBackgroundColor, type: Literal['set_background_color'] = 'set_background_color') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetBackgroundColor[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetBackgroundColor, required=True), 'type': FieldInfo(annotation=Literal['set_background_color'], required=False, default='set_background_color')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_background_color'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetCurrentToolProperties(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_current_tool_properties.SetCurrentToolProperties'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_current_tool_properties']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetCurrentToolProperties'>, 'config': {'title': 'OptionSetCurrentToolProperties'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetCurrentToolProperties'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetCurrentToolProperties:94248693613248', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_current_tool_properties.SetCurrentToolProperties'>, 'config': {'title': 'SetCurrentToolProperties'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_current_tool_properties.SetCurrentToolProperties'>>]}, 'ref': 'kittycad.models.set_current_tool_properties.SetCurrentToolProperties:94248693467200', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetCurrentToolProperties', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_current_tool_properties', 'schema': {'expected': ['set_current_tool_properties'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetCurrentToolProperties', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetCurrentToolProperties, required=True), 'type': FieldInfo(annotation=Literal['set_current_tool_properties'], required=False, default='set_current_tool_properties')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbe742c0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe50840,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetCurrentToolProperties",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef5520,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_current_tool_properties",                                             },                                             expected_py: None,                                             name: "literal['set_current_tool_properties']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetCurrentToolProperties",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetCurrentToolProperties", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1ee50,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1ee80,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetCurrentToolProperties",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe50840,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SetCurrentToolProperties",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1eeb0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1eee0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef5520,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_current_tool_properties": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c54600,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef5520,                                                 ),                                             ],                                         },                                         expected_repr: "'set_current_tool_properties'",                                         name: "literal['set_current_tool_properties']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_current_tool_properties']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetCurrentToolProperties",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbe742c0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSetCurrentToolProperties",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_current_tool_properties.SetCurrentToolProperties, type: Literal['set_current_tool_properties'] = 'set_current_tool_properties') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetCurrentToolProperties[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetCurrentToolProperties, required=True), 'type': FieldInfo(annotation=Literal['set_current_tool_properties'], required=False, default='set_current_tool_properties')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_current_tool_properties'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetDefaultSystemProperties(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_default_system_properties.SetDefaultSystemProperties'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_default_system_properties']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetDefaultSystemProperties'>, 'config': {'title': 'OptionSetDefaultSystemProperties'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetDefaultSystemProperties'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetDefaultSystemProperties:94248694136384', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_default_system_properties.SetDefaultSystemProperties'>, 'config': {'title': 'SetDefaultSystemProperties'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_default_system_properties.SetDefaultSystemProperties'>>]}, 'ref': 'kittycad.models.set_default_system_properties.SetDefaultSystemProperties:94248693471504', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetDefaultSystemProperties', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_default_system_properties', 'schema': {'expected': ['set_default_system_properties'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetDefaultSystemProperties', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetDefaultSystemProperties, required=True), 'type': FieldInfo(annotation=Literal['set_default_system_properties'], required=False, default='set_default_system_properties')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbef3e40,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef55c0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_default_system_properties",                                             },                                             expected_py: None,                                             name: "literal['set_default_system_properties']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe51910,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetDefaultSystemProperties",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetDefaultSystemProperties",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetDefaultSystemProperties", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c40930,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c40e40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetDefaultSystemProperties",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe51910,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SetDefaultSystemProperties",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40ba0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40a20,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef55c0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_default_system_properties": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c48100,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef55c0,                                                 ),                                             ],                                         },                                         expected_repr: "'set_default_system_properties'",                                         name: "literal['set_default_system_properties']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_default_system_properties']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetDefaultSystemProperties",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbef3e40,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSetDefaultSystemProperties",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_default_system_properties.SetDefaultSystemProperties, type: Literal['set_default_system_properties'] = 'set_default_system_properties') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetDefaultSystemProperties[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetDefaultSystemProperties, required=True), 'type': FieldInfo(annotation=Literal['set_default_system_properties'], required=False, default='set_default_system_properties')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_default_system_properties'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetSceneUnits(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_scene_units.SetSceneUnits'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_scene_units']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSceneUnits'>, 'config': {'title': 'OptionSetSceneUnits'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSceneUnits'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetSceneUnits:94248694202048', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_scene_units.SetSceneUnits'>, 'config': {'title': 'SetSceneUnits'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_scene_units.SetSceneUnits'>>]}, 'ref': 'kittycad.models.set_scene_units.SetSceneUnits:94248693474224', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetSceneUnits', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_scene_units', 'schema': {'expected': ['set_scene_units'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetSceneUnits', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSceneUnits, required=True), 'type': FieldInfo(annotation=Literal['set_scene_units'], required=False, default='set_scene_units')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf03ec0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe523b0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetSceneUnits",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f018f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_scene_units",                                             },                                             expected_py: None,                                             name: "literal['set_scene_units']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetSceneUnits",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetSceneUnits", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1f960,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1f990,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetSceneUnits",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe523b0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SetSceneUnits",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1f9c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f9f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f018f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_scene_units": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c5dd00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f018f0,                                                 ),                                             ],                                         },                                         expected_repr: "'set_scene_units'",                                         name: "literal['set_scene_units']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_scene_units']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetSceneUnits",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf03ec0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSetSceneUnits",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_scene_units.SetSceneUnits, type: Literal['set_scene_units'] = 'set_scene_units') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetSceneUnits[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSceneUnits, required=True), 'type': FieldInfo(annotation=Literal['set_scene_units'], required=False, default='set_scene_units')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_scene_units'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetSelectionFilter(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_selection_filter.SetSelectionFilter'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_selection_filter']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionFilter'>, 'config': {'title': 'OptionSetSelectionFilter'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionFilter'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionFilter:94248694220672', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_selection_filter.SetSelectionFilter'>, 'config': {'title': 'SetSelectionFilter'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_selection_filter.SetSelectionFilter'>>]}, 'ref': 'kittycad.models.set_selection_filter.SetSelectionFilter:94248693454880', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetSelectionFilter', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_selection_filter', 'schema': {'expected': ['set_selection_filter'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetSelectionFilter', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSelectionFilter, required=True), 'type': FieldInfo(annotation=Literal['set_selection_filter'], required=False, default='set_selection_filter')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf08780,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe4d820,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetSelectionFilter",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f019b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_selection_filter",                                             },                                             expected_py: None,                                             name: "literal['set_selection_filter']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetSelectionFilter",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetSelectionFilter", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c41380,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c413b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetSelectionFilter",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe4d820,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SetSelectionFilter",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c406f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c410e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f019b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_selection_filter": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b315c240,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f019b0,                                                 ),                                             ],                                         },                                         expected_repr: "'set_selection_filter'",                                         name: "literal['set_selection_filter']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_selection_filter']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetSelectionFilter",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf08780,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSetSelectionFilter",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_selection_filter.SetSelectionFilter, type: Literal['set_selection_filter'] = 'set_selection_filter') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetSelectionFilter[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSelectionFilter, required=True), 'type': FieldInfo(annotation=Literal['set_selection_filter'], required=False, default='set_selection_filter')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_selection_filter'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetSelectionType(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_selection_type.SetSelectionType'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_selection_type']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionType'>, 'config': {'title': 'OptionSetSelectionType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionType'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionType:94248694211344', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_selection_type.SetSelectionType'>, 'config': {'title': 'SetSelectionType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_selection_type.SetSelectionType'>>]}, 'ref': 'kittycad.models.set_selection_type.SetSelectionType:94248693458128', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetSelectionType', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_selection_type', 'schema': {'expected': ['set_selection_type'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetSelectionType', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSelectionType, required=True), 'type': FieldInfo(annotation=Literal['set_selection_type'], required=False, default='set_selection_type')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf06310,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f01ab0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_selection_type",                                             },                                             expected_py: None,                                             name: "literal['set_selection_type']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe4e4d0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetSelectionType",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetSelectionType",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetSelectionType", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2da3930,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da33f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetSelectionType",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe4e4d0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SetSelectionType",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2da3570,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da2d60,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f01ab0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_selection_type": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c4af80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f01ab0,                                                 ),                                             ],                                         },                                         expected_repr: "'set_selection_type'",                                         name: "literal['set_selection_type']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_selection_type']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetSelectionType",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf06310,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSetSelectionType",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_selection_type.SetSelectionType, type: Literal['set_selection_type'] = 'set_selection_type') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetSelectionType[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSelectionType, required=True), 'type': FieldInfo(annotation=Literal['set_selection_type'], required=False, default='set_selection_type')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_selection_type'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetTool(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_tool.SetTool'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_tool']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetTool'>, 'config': {'title': 'OptionSetTool'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetTool'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetTool:94248694046048', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_tool.SetTool'>, 'config': {'title': 'SetTool'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_tool.SetTool'>>]}, 'ref': 'kittycad.models.set_tool.SetTool:94248693461376', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetTool', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_tool', 'schema': {'expected': ['set_tool'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetTool', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetTool, required=True), 'type': FieldInfo(annotation=Literal['set_tool'], required=False, default='set_tool')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbeddd60,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f01b70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_tool",                                             },                                             expected_py: None,                                             name: "literal['set_tool']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe4f180,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetTool",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetTool",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetTool", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1e5e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1e610,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetTool",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe4f180,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SetTool",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1e640,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1e670,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f01b70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_tool": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c37440,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f01b70,                                                 ),                                             ],                                         },                                         expected_repr: "'set_tool'",                                         name: "literal['set_tool']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_tool']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetTool",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbeddd60,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSetTool",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_tool.SetTool, type: Literal['set_tool'] = 'set_tool') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetTool[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetTool, required=True), 'type': FieldInfo(annotation=Literal['set_tool'], required=False, default='set_tool')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_tool'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSketchModeDisable(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.sketch_mode_disable.SketchModeDisable'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['sketch_mode_disable']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSketchModeDisable'>, 'config': {'title': 'OptionSketchModeDisable'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSketchModeDisable'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSketchModeDisable:94248694064448', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.sketch_mode_disable.SketchModeDisable'>, 'config': {'title': 'SketchModeDisable'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.sketch_mode_disable.SketchModeDisable'>>]}, 'ref': 'kittycad.models.sketch_mode_disable.SketchModeDisable:94248693464080', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SketchModeDisable', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'sketch_mode_disable', 'schema': {'expected': ['sketch_mode_disable'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSketchModeDisable', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SketchModeDisable, required=True), 'type': FieldInfo(annotation=Literal['sketch_mode_disable'], required=False, default='sketch_mode_disable')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbee2540,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe4fc10,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SketchModeDisable",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f01d70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "sketch_mode_disable",                                             },                                             expected_py: None,                                             name: "literal['sketch_mode_disable']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSketchModeDisable",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSketchModeDisable", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2da3690,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da39f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SketchModeDisable",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe4fc10,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SketchModeDisable",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2da3600,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da2df0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f01d70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "sketch_mode_disable": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd5cc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f01d70,                                                 ),                                             ],                                         },                                         expected_repr: "'sketch_mode_disable'",                                         name: "literal['sketch_mode_disable']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['sketch_mode_disable']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSketchModeDisable",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbee2540,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSketchModeDisable",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.sketch_mode_disable.SketchModeDisable, type: Literal['sketch_mode_disable'] = 'sketch_mode_disable') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SketchModeDisable[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SketchModeDisable, required=True), 'type': FieldInfo(annotation=Literal['sketch_mode_disable'], required=False, default='sketch_mode_disable')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['sketch_mode_disable'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid2DAddHole(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid2d_add_hole.Solid2dAddHole'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid2d_add_hole']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid2DAddHole'>, 'config': {'title': 'OptionSolid2DAddHole'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid2DAddHole'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid2DAddHole:94248693980736', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid2d_add_hole.Solid2dAddHole'>, 'config': {'title': 'Solid2dAddHole'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid2d_add_hole.Solid2dAddHole'>>]}, 'ref': 'kittycad.models.solid2d_add_hole.Solid2dAddHole:94248693496016', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Solid2dAddHole', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid2d_add_hole', 'schema': {'expected': ['solid2d_add_hole'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid2DAddHole', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid2dAddHole, required=True), 'type': FieldInfo(annotation=Literal['solid2d_add_hole'], required=False, default='solid2d_add_hole')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbecde40,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f01e70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid2d_add_hole",                                             },                                             expected_py: None,                                             name: "literal['solid2d_add_hole']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe578d0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid2dAddHole",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid2DAddHole",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid2DAddHole", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1e1c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1e1f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Solid2dAddHole",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe578d0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Solid2dAddHole",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1e220,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1e250,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f01e70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid2d_add_hole": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dacd00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f01e70,                                                 ),                                             ],                                         },                                         expected_repr: "'solid2d_add_hole'",                                         name: "literal['solid2d_add_hole']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid2d_add_hole']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid2DAddHole",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbecde40,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSolid2DAddHole",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid2d_add_hole.Solid2dAddHole, type: Literal['solid2d_add_hole'] = 'solid2d_add_hole') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid2dAddHole[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid2dAddHole, required=True), 'type': FieldInfo(annotation=Literal['solid2d_add_hole'], required=False, default='solid2d_add_hole')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid2d_add_hole'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DFilletEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_fillet_edge.Solid3dFilletEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_fillet_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DFilletEdge'>, 'config': {'title': 'OptionSolid3DFilletEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DFilletEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DFilletEdge:94248693990128', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_fillet_edge.Solid3dFilletEdge'>, 'config': {'title': 'Solid3dFilletEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_fillet_edge.Solid3dFilletEdge'>>]}, 'ref': 'kittycad.models.solid3d_fillet_edge.Solid3dFilletEdge:94248692021136', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Solid3dFilletEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_fillet_edge', 'schema': {'expected': ['solid3d_fillet_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DFilletEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dFilletEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_fillet_edge'], required=False, default='solid3d_fillet_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbed02f0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f01f30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_fillet_edge",                                             },                                             expected_py: None,                                             name: "literal['solid3d_fillet_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbcef790,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dFilletEdge",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DFilletEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DFilletEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c404e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c406c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Solid3dFilletEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbcef790,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Solid3dFilletEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40780,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c403c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f01f30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_fillet_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd7840,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f01f30,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_fillet_edge'",                                         name: "literal['solid3d_fillet_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_fillet_edge']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DFilletEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbed02f0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSolid3DFilletEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_fillet_edge.Solid3dFilletEdge, type: Literal['solid3d_fillet_edge'] = 'solid3d_fillet_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dFilletEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dFilletEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_fillet_edge'], required=False, default='solid3d_fillet_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_fillet_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllEdgeFaces(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_all_edge_faces.Solid3dGetAllEdgeFaces'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_all_edge_faces']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllEdgeFaces'>, 'config': {'title': 'OptionSolid3DGetAllEdgeFaces'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllEdgeFaces'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllEdgeFaces:94248694677488', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_all_edge_faces.Solid3dGetAllEdgeFaces'>, 'config': {'title': 'Solid3dGetAllEdgeFaces'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_all_edge_faces.Solid3dGetAllEdgeFaces'>>]}, 'ref': 'kittycad.models.solid3d_get_all_edge_faces.Solid3dGetAllEdgeFaces:94248692024384', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'faces': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetAllEdgeFaces', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_all_edge_faces', 'schema': {'expected': ['solid3d_get_all_edge_faces'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetAllEdgeFaces', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetAllEdgeFaces, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_all_edge_faces'], required=False, default='solid3d_get_all_edge_faces')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf77ff0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef5660,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_all_edge_faces",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_all_edge_faces']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbcf0440,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "faces": SerField {                                                     key_py: Py(                                                         0x00007f40b2daa910,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetAllEdgeFaces",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetAllEdgeFaces",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetAllEdgeFaces", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6de00,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6de30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "faces",                                                 lookup_key: Simple {                                                     key: "faces",                                                     py_key: Py(                                                         0x00007f40b2c6dda0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "faces",                                                                 Py(                                                                     0x00007f40b2c6ddd0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b2daa910,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetAllEdgeFaces",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbcf0440,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Solid3dGetAllEdgeFaces",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6de60,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6de90,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef5660,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_all_edge_faces": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c9f480,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef5660,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_all_edge_faces'",                                         name: "literal['solid3d_get_all_edge_faces']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_all_edge_faces']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetAllEdgeFaces",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf77ff0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSolid3DGetAllEdgeFaces",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_all_edge_faces.Solid3dGetAllEdgeFaces, type: Literal['solid3d_get_all_edge_faces'] = 'solid3d_get_all_edge_faces') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetAllEdgeFaces[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetAllEdgeFaces, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_all_edge_faces'], required=False, default='solid3d_get_all_edge_faces')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_all_edge_faces'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllOppositeEdges(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_all_opposite_edges.Solid3dGetAllOppositeEdges'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_all_opposite_edges']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllOppositeEdges'>, 'config': {'title': 'OptionSolid3DGetAllOppositeEdges'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllOppositeEdges'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllOppositeEdges:94248694689680', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_all_opposite_edges.Solid3dGetAllOppositeEdges'>, 'config': {'title': 'Solid3dGetAllOppositeEdges'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_all_opposite_edges.Solid3dGetAllOppositeEdges'>>]}, 'ref': 'kittycad.models.solid3d_get_all_opposite_edges.Solid3dGetAllOppositeEdges:94248687935552', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'edges': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetAllOppositeEdges', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_all_opposite_edges', 'schema': {'expected': ['solid3d_get_all_opposite_edges'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetAllOppositeEdges', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetAllOppositeEdges, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_all_opposite_edges'], required=False, default='solid3d_get_all_opposite_edges')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf7af90,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb90a040,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "edges": SerField {                                                     key_py: Py(                                                         0x00007f40b7c0f560,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetAllOppositeEdges",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef56b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_all_opposite_edges",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_all_opposite_edges']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetAllOppositeEdges",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetAllOppositeEdges", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6e220,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6e250,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "edges",                                                 lookup_key: Simple {                                                     key: "edges",                                                     py_key: Py(                                                         0x00007f40b2c6e1c0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "edges",                                                                 Py(                                                                     0x00007f40b2c6e1f0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c0f560,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetAllOppositeEdges",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb90a040,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Solid3dGetAllOppositeEdges",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6e280,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6e2b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef56b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_all_opposite_edges": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ca85c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef56b0,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_all_opposite_edges'",                                         name: "literal['solid3d_get_all_opposite_edges']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_all_opposite_edges']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetAllOppositeEdges",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf7af90,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSolid3DGetAllOppositeEdges",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_all_opposite_edges.Solid3dGetAllOppositeEdges, type: Literal['solid3d_get_all_opposite_edges'] = 'solid3d_get_all_opposite_edges') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetAllOppositeEdges[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetAllOppositeEdges, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_all_opposite_edges'], required=False, default='solid3d_get_all_opposite_edges')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_all_opposite_edges'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetCommonEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_common_edge.Solid3dGetCommonEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_common_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetCommonEdge'>, 'config': {'title': 'OptionSolid3DGetCommonEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetCommonEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetCommonEdge:94248694740560', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_common_edge.Solid3dGetCommonEdge'>, 'config': {'title': 'Solid3dGetCommonEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_common_edge.Solid3dGetCommonEdge'>>]}, 'ref': 'kittycad.models.solid3d_get_common_edge.Solid3dGetCommonEdge:94248687941008', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'edge': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetCommonEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_common_edge', 'schema': {'expected': ['solid3d_get_common_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetCommonEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetCommonEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_common_edge'], required=False, default='solid3d_get_common_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf87650,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fb90b590,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "edge": SerField {                                                     key_py: Py(                                                         0x00007f40b352eb80,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetCommonEdge",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f02170,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_common_edge",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_common_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetCommonEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetCommonEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6e460,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6e430,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "edge",                                                 lookup_key: Simple {                                                     key: "edge",                                                     py_key: Py(                                                         0x00007f40b2c6e2e0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "edge",                                                                 Py(                                                                     0x00007f40b2c6e400,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b352eb80,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetCommonEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fb90b590,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Solid3dGetCommonEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6e310,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6e3a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f02170,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_common_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ca9140,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f02170,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_common_edge'",                                         name: "literal['solid3d_get_common_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_common_edge']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetCommonEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf87650,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSolid3DGetCommonEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_common_edge.Solid3dGetCommonEdge, type: Literal['solid3d_get_common_edge'] = 'solid3d_get_common_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetCommonEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetCommonEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_common_edge'], required=False, default='solid3d_get_common_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_common_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetExtrusionFaceInfo(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_extrusion_face_info.Solid3dGetExtrusionFaceInfo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_extrusion_face_info']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetExtrusionFaceInfo'>, 'config': {'title': 'OptionSolid3DGetExtrusionFaceInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetExtrusionFaceInfo'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetExtrusionFaceInfo:94248695199200', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_extrusion_face_info.Solid3dGetExtrusionFaceInfo'>, 'config': {'title': 'Solid3dGetExtrusionFaceInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_extrusion_face_info.Solid3dGetExtrusionFaceInfo'>>]}, 'ref': 'kittycad.models.solid3d_get_extrusion_face_info.Solid3dGetExtrusionFaceInfo:94248693505248', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'faces': {'metadata': {}, 'schema': {'items_schema': {'cls': <class 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo'>, 'config': {'title': 'ExtrusionFaceInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo'>>]}, 'ref': 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo:94248687165968', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'cap': {'metadata': {}, 'schema': {'cls': <enum 'ExtrusionFaceCapType'>, 'members': [ExtrusionFaceCapType.NONE, ExtrusionFaceCapType.TOP, ExtrusionFaceCapType.BOTTOM, ExtrusionFaceCapType.BOTH], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.extrusion_face_cap_type.ExtrusionFaceCapType:94248687162240', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'curve_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'face_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'ExtrusionFaceInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetExtrusionFaceInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_extrusion_face_info', 'schema': {'expected': ['solid3d_get_extrusion_face_info'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetExtrusionFaceInfo', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetExtrusionFaceInfo, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_extrusion_face_info'], required=False, default='solid3d_get_extrusion_face_info')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbff75e0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe59ce0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "faces": SerField {                                                     key_py: Py(                                                         0x00007f40b2daa910,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Model(                                                                     ModelSerializer {                                                                         class: Py(                                                                             0x000055b7fb84e210,                                                                         ),                                                                         serializer: Fields(                                                                             GeneralFieldsSerializer {                                                                                 fields: {                                                                                     "curve_id": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b315fbb0,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             WithDefault(                                                                                                 WithDefaultSerializer {                                                                                                     default: Default(                                                                                                         Py(                                                                                                             0x00007f40b7b2d100,                                                                                                         ),                                                                                                     ),                                                                                                     serializer: Nullable(                                                                                                         NullableSerializer {                                                                                                             serializer: Str(                                                                                                                 StrSerializer,                                                                                                             ),                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "face_id": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b3e04870,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             WithDefault(                                                                                                 WithDefaultSerializer {                                                                                                     default: Default(                                                                                                         Py(                                                                                                             0x00007f40b7b2d100,                                                                                                         ),                                                                                                     ),                                                                                                     serializer: Nullable(                                                                                                         NullableSerializer {                                                                                                             serializer: Str(                                                                                                                 StrSerializer,                                                                                                             ),                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "cap": SerField {                                                                                         key_py: Py(                                                                                             0x00007f40b5aae8e0,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Enum(                                                                                                 EnumSerializer {                                                                                                     class: Py(                                                                                                         0x000055b7fb84d380,                                                                                                     ),                                                                                                     serializer: Some(                                                                                                         Str(                                                                                                             StrSerializer,                                                                                                         ),                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                 },                                                                                 computed_fields: Some(                                                                                     ComputedFields(                                                                                         [],                                                                                     ),                                                                                 ),                                                                                 mode: SimpleDict,                                                                                 extra_serializer: None,                                                                                 filter: SchemaFilter {                                                                                     include: None,                                                                                     exclude: None,                                                                                 },                                                                                 required_fields: 3,                                                                             },                                                                         ),                                                                         has_extra: false,                                                                         root_model: false,                                                                         name: "ExtrusionFaceInfo",                                                                     },                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[ExtrusionFaceInfo]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetExtrusionFaceInfo",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef5750,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_extrusion_face_info",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_extrusion_face_info']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetExtrusionFaceInfo",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetExtrusionFaceInfo", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6c0f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6e7f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "faces",                                                 lookup_key: Simple {                                                     key: "faces",                                                     py_key: Py(                                                         0x00007f40b2c6d020,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "faces",                                                                 Py(                                                                     0x00007f40b2c6e8b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b2daa910,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Model(                                                                 ModelValidator {                                                                     revalidate: Never,                                                                     validator: ModelFields(                                                                         ModelFieldsValidator {                                                                             fields: [                                                                                 Field {                                                                                     name: "cap",                                                                                     lookup_key: Simple {                                                                                         key: "cap",                                                                                         py_key: Py(                                                                                             0x00007f40b2c6c120,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "cap",                                                                                                     Py(                                                                                                         0x00007f40b2c6e850,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b5aae8e0,                                                                                     ),                                                                                     validator: StrEnum(                                                                                         EnumValidator {                                                                                             phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                                                             class: Py(                                                                                                 0x000055b7fb84d380,                                                                                             ),                                                                                             lookup: LiteralLookup {                                                                                                 expected_bool: None,                                                                                                 expected_int: None,                                                                                                 expected_str: Some(                                                                                                     {                                                                                                         "top": 1,                                                                                                         "none": 0,                                                                                                         "both": 3,                                                                                                         "bottom": 2,                                                                                                     },                                                                                                 ),                                                                                                 expected_py_dict: None,                                                                                                 expected_py_values: None,                                                                                                 expected_py_primitives: Some(                                                                                                     Py(                                                                                                         0x00007f40b2ce5b40,                                                                                                     ),                                                                                                 ),                                                                                                 values: [                                                                                                     Py(                                                                                                         0x00007f40b3154410,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007f40b3154470,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007f40b31544d0,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007f40b3154530,                                                                                                     ),                                                                                                 ],                                                                                             },                                                                                             missing: None,                                                                                             expected_repr: "'none', 'top', 'bottom' or 'both'",                                                                                             strict: false,                                                                                             class_repr: "ExtrusionFaceCapType",                                                                                             name: "str-enum[ExtrusionFaceCapType]",                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "curve_id",                                                                                     lookup_key: Simple {                                                                                         key: "curve_id",                                                                                         py_key: Py(                                                                                             0x00007f40b2e2fc30,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "curve_id",                                                                                                     Py(                                                                                                         0x00007f40b31f55f0,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b315fbb0,                                                                                     ),                                                                                     validator: WithDefault(                                                                                         WithDefaultValidator {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             on_error: Raise,                                                                                             validator: Nullable(                                                                                                 NullableValidator {                                                                                                     validator: Str(                                                                                                         StrValidator {                                                                                                             strict: false,                                                                                                             coerce_numbers_to_str: false,                                                                                                         },                                                                                                     ),                                                                                                     name: "nullable[str]",                                                                                                 },                                                                                             ),                                                                                             validate_default: false,                                                                                             copy_default: false,                                                                                             name: "default[nullable[str]]",                                                                                             undefined: Py(                                                                                                 0x00007f40b5be63d0,                                                                                             ),                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "face_id",                                                                                     lookup_key: Simple {                                                                                         key: "face_id",                                                                                         py_key: Py(                                                                                             0x00007f40b2c6d8f0,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "face_id",                                                                                                     Py(                                                                                                         0x00007f40b2c6c9f0,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007f40b3e04870,                                                                                     ),                                                                                     validator: WithDefault(                                                                                         WithDefaultValidator {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             on_error: Raise,                                                                                             validator: Nullable(                                                                                                 NullableValidator {                                                                                                     validator: Str(                                                                                                         StrValidator {                                                                                                             strict: false,                                                                                                             coerce_numbers_to_str: false,                                                                                                         },                                                                                                     ),                                                                                                     name: "nullable[str]",                                                                                                 },                                                                                             ),                                                                                             validate_default: false,                                                                                             copy_default: false,                                                                                             name: "default[nullable[str]]",                                                                                             undefined: Py(                                                                                                 0x00007f40b5be63d0,                                                                                             ),                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                             ],                                                                             model_name: "ExtrusionFaceInfo",                                                                             extra_behavior: Ignore,                                                                             extras_validator: None,                                                                             strict: false,                                                                             from_attributes: false,                                                                             loc_by_alias: true,                                                                         },                                                                     ),                                                                     class: Py(                                                                         0x000055b7fb84e210,                                                                     ),                                                                     generic_origin: None,                                                                     post_init: None,                                                                     frozen: false,                                                                     custom_init: false,                                                                     root_model: false,                                                                     undefined: Py(                                                                         0x00007f40b5be63d0,                                                                     ),                                                                     name: "ExtrusionFaceInfo",                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetExtrusionFaceInfo",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe59ce0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Solid3dGetExtrusionFaceInfo",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6c090,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6cab0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef5750,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_extrusion_face_info": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ce7b00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef5750,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_extrusion_face_info'",                                         name: "literal['solid3d_get_extrusion_face_info']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_extrusion_face_info']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetExtrusionFaceInfo",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbff75e0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSolid3DGetExtrusionFaceInfo",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_extrusion_face_info.Solid3dGetExtrusionFaceInfo, type: Literal['solid3d_get_extrusion_face_info'] = 'solid3d_get_extrusion_face_info') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetExtrusionFaceInfo[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetExtrusionFaceInfo, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_extrusion_face_info'], required=False, default='solid3d_get_extrusion_face_info')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_extrusion_face_info'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetNextAdjacentEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_next_adjacent_edge.Solid3dGetNextAdjacentEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_next_adjacent_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetNextAdjacentEdge'>, 'config': {'title': 'OptionSolid3DGetNextAdjacentEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetNextAdjacentEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetNextAdjacentEdge:94248694713776', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_next_adjacent_edge.Solid3dGetNextAdjacentEdge'>, 'config': {'title': 'Solid3dGetNextAdjacentEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_next_adjacent_edge.Solid3dGetNextAdjacentEdge'>>]}, 'ref': 'kittycad.models.solid3d_get_next_adjacent_edge.Solid3dGetNextAdjacentEdge:94248692041904', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'edge': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetNextAdjacentEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_next_adjacent_edge', 'schema': {'expected': ['solid3d_get_next_adjacent_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetNextAdjacentEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetNextAdjacentEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_next_adjacent_edge'], required=False, default='solid3d_get_next_adjacent_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf80db0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbcf48b0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "edge": SerField {                                                     key_py: Py(                                                         0x00007f40b352eb80,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetNextAdjacentEdge",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef57f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_next_adjacent_edge",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_next_adjacent_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetNextAdjacentEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetNextAdjacentEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6ea30,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6ea60,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "edge",                                                 lookup_key: Simple {                                                     key: "edge",                                                     py_key: Py(                                                         0x00007f40b2c6e9d0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "edge",                                                                 Py(                                                                     0x00007f40b2c6ea00,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b352eb80,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetNextAdjacentEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbcf48b0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Solid3dGetNextAdjacentEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6ea90,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6eac0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef57f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_next_adjacent_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2caa640,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef57f0,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_next_adjacent_edge'",                                         name: "literal['solid3d_get_next_adjacent_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_next_adjacent_edge']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetNextAdjacentEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf80db0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSolid3DGetNextAdjacentEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_next_adjacent_edge.Solid3dGetNextAdjacentEdge, type: Literal['solid3d_get_next_adjacent_edge'] = 'solid3d_get_next_adjacent_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetNextAdjacentEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetNextAdjacentEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_next_adjacent_edge'], required=False, default='solid3d_get_next_adjacent_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_next_adjacent_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetOppositeEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_opposite_edge.Solid3dGetOppositeEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_opposite_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetOppositeEdge'>, 'config': {'title': 'OptionSolid3DGetOppositeEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetOppositeEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetOppositeEdge:94248694702160', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_opposite_edge.Solid3dGetOppositeEdge'>, 'config': {'title': 'Solid3dGetOppositeEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_opposite_edge.Solid3dGetOppositeEdge'>>]}, 'ref': 'kittycad.models.solid3d_get_opposite_edge.Solid3dGetOppositeEdge:94248693522992', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'edge': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetOppositeEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_opposite_edge', 'schema': {'expected': ['solid3d_get_opposite_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetOppositeEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetOppositeEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_opposite_edge'], required=False, default='solid3d_get_opposite_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf7e050,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe5e230,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "edge": SerField {                                                     key_py: Py(                                                         0x00007f40b352eb80,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetOppositeEdge",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef5890,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_opposite_edge",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_opposite_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetOppositeEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetOppositeEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6e640,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6e670,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "edge",                                                 lookup_key: Simple {                                                     key: "edge",                                                     py_key: Py(                                                         0x00007f40b2c6e5e0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "edge",                                                                 Py(                                                                     0x00007f40b2c6e610,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b352eb80,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetOppositeEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe5e230,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Solid3dGetOppositeEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6e6a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6e6d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef5890,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_opposite_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ca95c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef5890,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_opposite_edge'",                                         name: "literal['solid3d_get_opposite_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_opposite_edge']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetOppositeEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf7e050,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSolid3DGetOppositeEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_opposite_edge.Solid3dGetOppositeEdge, type: Literal['solid3d_get_opposite_edge'] = 'solid3d_get_opposite_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetOppositeEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetOppositeEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_opposite_edge'], required=False, default='solid3d_get_opposite_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_opposite_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetPrevAdjacentEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_prev_adjacent_edge.Solid3dGetPrevAdjacentEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_prev_adjacent_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetPrevAdjacentEdge'>, 'config': {'title': 'OptionSolid3DGetPrevAdjacentEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetPrevAdjacentEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetPrevAdjacentEdge:94248694727264', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_prev_adjacent_edge.Solid3dGetPrevAdjacentEdge'>, 'config': {'title': 'Solid3dGetPrevAdjacentEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_prev_adjacent_edge.Solid3dGetPrevAdjacentEdge'>>]}, 'ref': 'kittycad.models.solid3d_get_prev_adjacent_edge.Solid3dGetPrevAdjacentEdge:94248693527792', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'edge': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetPrevAdjacentEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_prev_adjacent_edge', 'schema': {'expected': ['solid3d_get_prev_adjacent_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetPrevAdjacentEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetPrevAdjacentEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_prev_adjacent_edge'], required=False, default='solid3d_get_prev_adjacent_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf84260,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3ef58e0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_prev_adjacent_edge",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_prev_adjacent_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe5f4f0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "edge": SerField {                                                     key_py: Py(                                                         0x00007f40b352eb80,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007f40b7b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetPrevAdjacentEdge",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetPrevAdjacentEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetPrevAdjacentEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6e970,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6e9a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "edge",                                                 lookup_key: Simple {                                                     key: "edge",                                                     py_key: Py(                                                         0x00007f40b2c408a0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "edge",                                                                 Py(                                                                     0x00007f40b2c40870,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b352eb80,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007f40b7b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetPrevAdjacentEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe5f4f0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Solid3dGetPrevAdjacentEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6e940,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6e910,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3ef58e0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_prev_adjacent_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c93fc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3ef58e0,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_prev_adjacent_edge'",                                         name: "literal['solid3d_get_prev_adjacent_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_prev_adjacent_edge']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetPrevAdjacentEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf84260,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSolid3DGetPrevAdjacentEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_prev_adjacent_edge.Solid3dGetPrevAdjacentEdge, type: Literal['solid3d_get_prev_adjacent_edge'] = 'solid3d_get_prev_adjacent_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetPrevAdjacentEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetPrevAdjacentEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_prev_adjacent_edge'], required=False, default='solid3d_get_prev_adjacent_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_prev_adjacent_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DShellFace(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_shell_face.Solid3dShellFace'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_shell_face']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DShellFace'>, 'config': {'title': 'OptionSolid3DShellFace'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DShellFace'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DShellFace:94248693795136', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_shell_face.Solid3dShellFace'>, 'config': {'title': 'Solid3dShellFace'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_shell_face.Solid3dShellFace'>>]}, 'ref': 'kittycad.models.solid3d_shell_face.Solid3dShellFace:94248693536672', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Solid3dShellFace', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_shell_face', 'schema': {'expected': ['solid3d_shell_face'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DShellFace', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dShellFace, required=True), 'type': FieldInfo(annotation=Literal['solid3d_shell_face'], required=False, default='solid3d_shell_face')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbea0940,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe617a0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dShellFace",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f024b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_shell_face",                                             },                                             expected_py: None,                                             name: "literal['solid3d_shell_face']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DShellFace",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DShellFace", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2da8ab0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2dab420,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Solid3dShellFace",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe617a0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Solid3dShellFace",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2dab1b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2dab1e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f024b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_shell_face": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dd9bc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f024b0,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_shell_face'",                                         name: "literal['solid3d_shell_face']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_shell_face']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DShellFace",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbea0940,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSolid3DShellFace",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_shell_face.Solid3dShellFace, type: Literal['solid3d_shell_face'] = 'solid3d_shell_face') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dShellFace[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dShellFace, required=True), 'type': FieldInfo(annotation=Literal['solid3d_shell_face'], required=False, default='solid3d_shell_face')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_shell_face'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionStartPath(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.start_path.StartPath'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['start_path']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionStartPath'>, 'config': {'title': 'OptionStartPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionStartPath'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionStartPath:94248693744800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.start_path.StartPath'>, 'config': {'title': 'StartPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.start_path.StartPath'>>]}, 'ref': 'kittycad.models.start_path.StartPath:94248693640336', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'StartPath', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'start_path', 'schema': {'expected': ['start_path'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionStartPath', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=StartPath, required=True), 'type': FieldInfo(annotation=Literal['start_path'], required=False, default='start_path')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbe944a0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f02770,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "start_path",                                             },                                             expected_py: None,                                             name: "literal['start_path']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe7ac90,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "StartPath",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionStartPath",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionStartPath", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2daa070,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da9f50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "StartPath",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe7ac90,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "StartPath",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2daae50,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2daae80,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f02770,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "start_path": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2de2b00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f02770,                                                 ),                                             ],                                         },                                         expected_repr: "'start_path'",                                         name: "literal['start_path']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['start_path']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionStartPath",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbe944a0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionStartPath",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.start_path.StartPath, type: Literal['start_path'] = 'start_path') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: StartPath[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=StartPath, required=True), 'type': FieldInfo(annotation=Literal['start_path'], required=False, default='start_path')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['start_path'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSurfaceArea(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.surface_area.SurfaceArea'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['surface_area']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSurfaceArea'>, 'config': {'title': 'OptionSurfaceArea'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSurfaceArea'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSurfaceArea:94248695095584', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.surface_area.SurfaceArea'>, 'config': {'title': 'SurfaceArea'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.surface_area.SurfaceArea'>>]}, 'ref': 'kittycad.models.surface_area.SurfaceArea:94248693643584', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'output_unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitArea'>, 'members': [UnitArea.CM2, UnitArea.DM2, UnitArea.FT2, UnitArea.IN2, UnitArea.KM2, UnitArea.M2, UnitArea.MM2, UnitArea.YD2], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_area.UnitArea:94248685664256', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'surface_area': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'SurfaceArea', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'surface_area', 'schema': {'expected': ['surface_area'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSurfaceArea', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SurfaceArea, required=True), 'type': FieldInfo(annotation=Literal['surface_area'], required=False, default='surface_area')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfde120,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f02d30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "surface_area",                                             },                                             expected_py: None,                                             name: "literal['surface_area']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe7b940,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "output_unit": SerField {                                                     key_py: Py(                                                         0x00007f40b3530770,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x000055b7fb6df800,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "surface_area": SerField {                                                     key_py: Py(                                                         0x00007f40b3f02d30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SurfaceArea",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSurfaceArea",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSurfaceArea", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2cdcd50,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2cdcd80,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "output_unit",                                                 lookup_key: Simple {                                                     key: "output_unit",                                                     py_key: Py(                                                         0x00007f40b2cf07f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "output_unit",                                                                 Py(                                                                     0x00007f40b2cf07b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3530770,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x000055b7fb6df800,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "km2": 4,                                                                     "dm2": 1,                                                                     "ft2": 2,                                                                     "m2": 5,                                                                     "mm2": 6,                                                                     "in2": 3,                                                                     "cm2": 0,                                                                     "yd2": 7,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007f40b2cf0740,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007f40b34bd790,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bd7f0,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bd850,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bd8b0,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bd910,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bd970,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bd9d0,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bda30,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'cm2', 'dm2', 'ft2', 'in2', 'km2', 'm2', 'mm2' or 'yd2'",                                                         strict: false,                                                         class_repr: "UnitArea",                                                         name: "str-enum[UnitArea]",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "surface_area",                                                 lookup_key: Simple {                                                     key: "surface_area",                                                     py_key: Py(                                                         0x00007f40b2cf0830,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "surface_area",                                                                 Py(                                                                     0x00007f40b2cf0870,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3f02d30,                                                 ),                                                 validator: Float(                                                     FloatValidator {                                                         strict: false,                                                         allow_inf_nan: true,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "SurfaceArea",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe7b940,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "SurfaceArea",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2cdcdb0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2cdcde0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f02d30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "surface_area": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2cf08c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f02d30,                                                 ),                                             ],                                         },                                         expected_repr: "'surface_area'",                                         name: "literal['surface_area']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['surface_area']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSurfaceArea",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfde120,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSurfaceArea",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.surface_area.SurfaceArea, type: Literal['surface_area'] = 'surface_area') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SurfaceArea[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SurfaceArea, required=True), 'type': FieldInfo(annotation=Literal['surface_area'], required=False, default='surface_area')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['surface_area'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSweep(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.sweep.Sweep'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['sweep']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSweep'>, 'config': {'title': 'OptionSweep'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSweep'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSweep:94248693781728', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.sweep.Sweep'>, 'config': {'title': 'Sweep'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.sweep.Sweep'>>]}, 'ref': 'kittycad.models.sweep.Sweep:94248693513280', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Sweep', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'sweep', 'schema': {'expected': ['sweep'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSweep', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Sweep, required=True), 'type': FieldInfo(annotation=Literal['sweep'], required=False, default='sweep')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbe9d4e0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe5bc40,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Sweep",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b41c0570,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "sweep",                                             },                                             expected_py: None,                                             name: "literal['sweep']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSweep",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSweep", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2da94d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2da87e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Sweep",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe5bc40,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Sweep",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2da8f00,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2da8cc0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b41c0570,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "sweep": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2de3d00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b41c0570,                                                 ),                                             ],                                         },                                         expected_repr: "'sweep'",                                         name: "literal['sweep']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['sweep']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSweep",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbe9d4e0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionSweep",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.sweep.Sweep, type: Literal['sweep'] = 'sweep') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Sweep[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Sweep, required=True), 'type': FieldInfo(annotation=Literal['sweep'], required=False, default='sweep')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['sweep'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionTakeSnapshot(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.take_snapshot.TakeSnapshot'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['take_snapshot']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionTakeSnapshot'>, 'config': {'title': 'OptionTakeSnapshot'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionTakeSnapshot'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionTakeSnapshot:94248694809632', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.take_snapshot.TakeSnapshot'>, 'config': {'title': 'TakeSnapshot'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.take_snapshot.TakeSnapshot'>>]}, 'ref': 'kittycad.models.take_snapshot.TakeSnapshot:94248693658256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'contents': {'metadata': {}, 'schema': {'function': {'function': <bound method Base64Data.validate of <class 'kittycad.models.base64data.Base64Data'>>, 'type': 'no-info'}, 'schema': {'choices': [{'type': 'str'}, {'type': 'bytes'}], 'type': 'union'}, 'serialization': {'function': <bound method Base64Data.serialize of <class 'kittycad.models.base64data.Base64Data'>>, 'type': 'function-plain'}, 'type': 'function-after'}, 'type': 'model-field'}}, 'model_name': 'TakeSnapshot', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'take_snapshot', 'schema': {'expected': ['take_snapshot'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionTakeSnapshot', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=TakeSnapshot, required=True), 'type': FieldInfo(annotation=Literal['take_snapshot'], required=False, default='take_snapshot')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf98420,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe7f290,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "contents": SerField {                                                     key_py: Py(                                                         0x00007f40b7bda960,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Function(                                                             FunctionPlainSerializer {                                                                 func: Py(                                                                     0x00007f40b2dedbc0,                                                                 ),                                                                 name: "plain_function[serialize]",                                                                 function_name: "serialize",                                                                 return_serializer: Any(                                                                     AnySerializer,                                                                 ),                                                                 fallback_serializer: None,                                                                 when_used: Always,                                                                 is_field_serializer: false,                                                                 info_arg: false,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "TakeSnapshot",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f02db0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "take_snapshot",                                             },                                             expected_py: None,                                             name: "literal['take_snapshot']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionTakeSnapshot",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionTakeSnapshot", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2e1f3f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2e1f2d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "contents",                                                 lookup_key: Simple {                                                     key: "contents",                                                     py_key: Py(                                                         0x00007f40b2e340f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "contents",                                                                 Py(                                                                     0x00007f40b3f12af0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7bda960,                                                 ),                                                 validator: FunctionAfter(                                                     FunctionAfterValidator {                                                         validator: Union(                                                             UnionValidator {                                                                 mode: Smart,                                                                 choices: [                                                                     (                                                                         Str(                                                                             StrValidator {                                                                                 strict: false,                                                                                 coerce_numbers_to_str: false,                                                                             },                                                                         ),                                                                         None,                                                                     ),                                                                     (                                                                         Bytes(                                                                             BytesValidator {                                                                                 strict: false,                                                                                 bytes_mode: ValBytesMode {                                                                                     ser: Utf8,                                                                                 },                                                                             },                                                                         ),                                                                         None,                                                                     ),                                                                 ],                                                                 custom_error: None,                                                                 strict: false,                                                                 name: "union[str,bytes]",                                                             },                                                         ),                                                         func: Py(                                                             0x00007f40b3f10840,                                                         ),                                                         config: Py(                                                             0x00007f40b2caaa00,                                                         ),                                                         name: "function-after[validate(), union[str,bytes]]",                                                         field_name: None,                                                         info_arg: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "TakeSnapshot",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe7f290,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "TakeSnapshot",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2e1f2a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2e1f360,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f02db0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "take_snapshot": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c81880,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f02db0,                                                 ),                                             ],                                         },                                         expected_repr: "'take_snapshot'",                                         name: "literal['take_snapshot']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['take_snapshot']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionTakeSnapshot",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf98420,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionTakeSnapshot",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.take_snapshot.TakeSnapshot, type: Literal['take_snapshot'] = 'take_snapshot') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: TakeSnapshot[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=TakeSnapshot, required=True), 'type': FieldInfo(annotation=Literal['take_snapshot'], required=False, default='take_snapshot')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['take_snapshot'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionUpdateAnnotation(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.update_annotation.UpdateAnnotation'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['update_annotation']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionUpdateAnnotation'>, 'config': {'title': 'OptionUpdateAnnotation'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionUpdateAnnotation'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionUpdateAnnotation:94248693934032', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.update_annotation.UpdateAnnotation'>, 'config': {'title': 'UpdateAnnotation'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.update_annotation.UpdateAnnotation'>>]}, 'ref': 'kittycad.models.update_annotation.UpdateAnnotation:94248693661200', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'UpdateAnnotation', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'update_annotation', 'schema': {'expected': ['update_annotation'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionUpdateAnnotation', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=UpdateAnnotation, required=True), 'type': FieldInfo(annotation=Literal['update_annotation'], required=False, default='update_annotation')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbec27d0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f04770,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "update_annotation",                                             },                                             expected_py: None,                                             name: "literal['update_annotation']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe7fe10,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "UpdateAnnotation",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionUpdateAnnotation",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionUpdateAnnotation", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2dab930,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2dab840,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "UpdateAnnotation",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe7fe10,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "UpdateAnnotation",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c40f30,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c40fc0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f04770,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "update_annotation": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2dc1600,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f04770,                                                 ),                                             ],                                         },                                         expected_repr: "'update_annotation'",                                         name: "literal['update_annotation']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['update_annotation']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionUpdateAnnotation",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbec27d0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionUpdateAnnotation",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.update_annotation.UpdateAnnotation, type: Literal['update_annotation'] = 'update_annotation') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: UpdateAnnotation[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=UpdateAnnotation, required=True), 'type': FieldInfo(annotation=Literal['update_annotation'], required=False, default='update_annotation')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['update_annotation'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionViewIsometric(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.view_isometric.ViewIsometric'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['view_isometric']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionViewIsometric'>, 'config': {'title': 'OptionViewIsometric'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionViewIsometric'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionViewIsometric:94248694595104', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.view_isometric.ViewIsometric'>, 'config': {'title': 'ViewIsometric'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.view_isometric.ViewIsometric'>>]}, 'ref': 'kittycad.models.view_isometric.ViewIsometric:94248693669776', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94248672388800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94248672379872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'ViewIsometric', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'view_isometric', 'schema': {'expected': ['view_isometric'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionViewIsometric', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ViewIsometric, required=True), 'type': FieldInfo(annotation=Literal['view_isometric'], required=False, default='view_isometric')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf63e20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe81f90,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007f40b6b205b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x000055b7faa366c0,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b6249620,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e06130,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7508150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d4330,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e062b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d43b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x000055b7faa343e0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ViewIsometric",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f24ff0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "view_isometric",                                             },                                             expected_py: None,                                             name: "literal['view_isometric']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionViewIsometric",     }, ), definitions=[Model(ModelSerializer { class: Py(0x55b7fa90b760), serializer: Fields(GeneralFieldsSerializer { fields: {"z": SerField { key_py: Py(0x7f40b7c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7f40b7c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7f40b7c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionViewIsometric", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6d440,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6d470,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007f40b2c9d870,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007f40b2c9d8b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b6b205b0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007f40b2c6d260,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007f40b2c6d290,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7508150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007f40b2c6d2c0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007f40b2c6d2f0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e06130,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007f40b2c9d7b0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007f40b2c9d770,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d43b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007f40b7c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x000055b7faa343e0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007f40b2c6d320,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007f40b2c6d350,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e062b0,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007f40b2c9d830,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007f40b2c9d7f0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d4330,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007f40b2c6d380,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007f40b2c6d3b0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007f40b2c6d3e0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007f40b2c6d410,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b6249620,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x000055b7faa366c0,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ViewIsometric",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe81f90,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ViewIsometric",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6d4a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6d4d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f24ff0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "view_isometric": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c9d900,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f24ff0,                                                 ),                                             ],                                         },                                         expected_repr: "'view_isometric'",                                         name: "literal['view_isometric']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['view_isometric']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionViewIsometric",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf63e20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionViewIsometric",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7f40b7c24420), path: LookupPath([S("x", Py(0x7f40b7c24420))]) }, name_py: Py(0x7f40b7c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7f40b7c24450), path: LookupPath([S("y", Py(0x7f40b7c24450))]) }, name_py: Py(0x7f40b7c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7f40b7c24480), path: LookupPath([S("z", Py(0x7f40b7c24480))]) }, name_py: Py(0x7f40b7c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b7fa90b760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7f40b5be63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.view_isometric.ViewIsometric, type: Literal['view_isometric'] = 'view_isometric') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ViewIsometric[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ViewIsometric, required=True), 'type': FieldInfo(annotation=Literal['view_isometric'], required=False, default='view_isometric')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['view_isometric'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionVolume(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.volume.Volume'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['volume']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionVolume'>, 'config': {'title': 'OptionVolume'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionVolume'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionVolume:94248695069104', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.volume.Volume'>, 'config': {'title': 'Volume'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.volume.Volume'>>]}, 'ref': 'kittycad.models.volume.Volume:94248693685280', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'output_unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitVolume'>, 'members': [UnitVolume.CM3, UnitVolume.FT3, UnitVolume.IN3, UnitVolume.M3, UnitVolume.YD3, UnitVolume.USFLOZ, UnitVolume.USGAL, UnitVolume.L, UnitVolume.ML], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_volume.UnitVolume:94248685673824', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'volume': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Volume', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'volume', 'schema': {'expected': ['volume'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionVolume', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Volume, required=True), 'type': FieldInfo(annotation=Literal['volume'], required=False, default='volume')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbfd79b0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b7c22ad8,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "volume",                                             },                                             expected_py: None,                                             name: "literal['volume']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe85c20,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "output_unit": SerField {                                                     key_py: Py(                                                         0x00007f40b3530770,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x000055b7fb6e1d60,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "volume": SerField {                                                     key_py: Py(                                                         0x00007f40b7c22ad8,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Volume",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionVolume",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionVolume", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2cdc5a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2cdc5d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "output_unit",                                                 lookup_key: Simple {                                                     key: "output_unit",                                                     py_key: Py(                                                         0x00007f40b2ce6170,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "output_unit",                                                                 Py(                                                                     0x00007f40b2ce6130,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b3530770,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x000055b7fb6e1d60,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "cm3": 0,                                                                     "m3": 3,                                                                     "yd3": 4,                                                                     "ft3": 1,                                                                     "usfloz": 5,                                                                     "in3": 2,                                                                     "usgal": 6,                                                                     "l": 7,                                                                     "ml": 8,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007f40b2ce60c0,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007f40b34bdd90,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bddf0,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bde50,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bdeb0,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bdf10,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bdf70,                                                                 ),                                                                 Py(                                                                     0x00007f40b34bdfd0,                                                                 ),                                                                 Py(                                                                     0x00007f40b34be030,                                                                 ),                                                                 Py(                                                                     0x00007f40b34be090,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'cm3', 'ft3', 'in3', 'm3', 'yd3', 'usfloz', 'usgal', 'l' or 'ml'",                                                         strict: false,                                                         class_repr: "UnitVolume",                                                         name: "str-enum[UnitVolume]",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "volume",                                                 lookup_key: Simple {                                                     key: "volume",                                                     py_key: Py(                                                         0x00007f40b2cdc540,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "volume",                                                                 Py(                                                                     0x00007f40b2cdc570,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b7c22ad8,                                                 ),                                                 validator: Float(                                                     FloatValidator {                                                         strict: false,                                                         allow_inf_nan: true,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Volume",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe85c20,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "Volume",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2cdc600,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2cdc630,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b7c22ad8,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "volume": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2ce61c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b7c22ad8,                                                 ),                                             ],                                         },                                         expected_repr: "'volume'",                                         name: "literal['volume']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['volume']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionVolume",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbfd79b0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionVolume",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.volume.Volume, type: Literal['volume'] = 'volume') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Volume[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Volume, required=True), 'type': FieldInfo(annotation=Literal['volume'], required=False, default='volume')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['volume'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionZoomToFit(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.zoom_to_fit.ZoomToFit'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['zoom_to_fit']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94248671164256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionZoomToFit'>, 'config': {'title': 'OptionZoomToFit'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionZoomToFit'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionZoomToFit:94248694557696', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.zoom_to_fit.ZoomToFit'>, 'config': {'title': 'ZoomToFit'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.zoom_to_fit.ZoomToFit'>>]}, 'ref': 'kittycad.models.zoom_to_fit.ZoomToFit:94248693704240', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94248672388800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94248672379872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94248671164256', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'ZoomToFit', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'zoom_to_fit', 'schema': {'expected': ['zoom_to_fit'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionZoomToFit', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ZoomToFit, required=True), 'type': FieldInfo(annotation=Literal['zoom_to_fit'], required=False, default='zoom_to_fit')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x000055b7fbf5ac00,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f40b7c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f40b3f25430,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "zoom_to_fit",                                             },                                             expected_py: None,                                             name: "literal['zoom_to_fit']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007f40b7c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x000055b7fbe8a630,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007f40b6b205b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x000055b7faa366c0,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b6249620,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e062b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b3e06130,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7508150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d4330,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007f40b7b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b33d43b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x000055b7faa343e0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007f40b7c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007f40b7c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ZoomToFit",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionZoomToFit",     }, ), definitions=[Model(ModelSerializer { class: Py(0x55b7fa90b760), serializer: Fields(GeneralFieldsSerializer { fields: {"x": SerField { key_py: Py(0x7f40b7c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7f40b7c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7f40b7c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionZoomToFit", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007f40b2c6c810,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007f40b2c6c8a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007f40b2c92e70,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007f40b2c92eb0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007f40b6b205b0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007f40b2c6c1b0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007f40b2c6c600,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7508150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007f40b2c6c690,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007f40b2c6c6c0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e06130,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007f40b2c92db0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007f40b2c92d70,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d43b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007f40b7c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007f40b7c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007f40b7c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007f40b7c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x000055b7faa343e0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007f40b2c6c990,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007f40b2c6c8d0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b3e062b0,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007f40b2c92e30,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007f40b2c92df0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b33d4330,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007f40b7b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007f40b5be63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007f40b2c6c7e0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007f40b2c6c900,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b7c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007f40b2c6c960,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007f40b2c6c930,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007f40b6249620,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x000055b7faa366c0,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007f40b5be63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ZoomToFit",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x000055b7fbe8a630,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                                 name: "ZoomToFit",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f40b2c6c870,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f40b2c6c060,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f40b7c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f40b3f25430,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "zoom_to_fit": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007f40b2c92f00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007f40b3f25430,                                                 ),                                             ],                                         },                                         expected_repr: "'zoom_to_fit'",                                         name: "literal['zoom_to_fit']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['zoom_to_fit']]",                                 undefined: Py(                                     0x00007f40b5be63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionZoomToFit",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x000055b7fbf5ac00,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f40b5be63d0,         ),         name: "OptionZoomToFit",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7f40b7c24420), path: LookupPath([S("x", Py(0x7f40b7c24420))]) }, name_py: Py(0x7f40b7c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7f40b7c24450), path: LookupPath([S("y", Py(0x7f40b7c24450))]) }, name_py: Py(0x7f40b7c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7f40b7c24480), path: LookupPath([S("z", Py(0x7f40b7c24480))]) }, name_py: Py(0x7f40b7c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b7fa90b760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7f40b5be63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.zoom_to_fit.ZoomToFit, type: Literal['zoom_to_fit'] = 'zoom_to_fit') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ZoomToFit[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ZoomToFit, required=True), 'type': FieldInfo(annotation=Literal['zoom_to_fit'], required=False, default='zoom_to_fit')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['zoom_to_fit'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self